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ABSTRACT
◥

Purpose: To investigate the use of plasma and urine DNA
mutation analysis for predicting neoadjuvant chemotherapy (NAC)
response and oncological outcome in patients with muscle-invasive
bladder cancer.

Experimental Design: Whole-exome sequencing of tumor and
germline DNA was performed for 92 patients treated with NAC
followed by radical cystectomy (RC). A custom NGS-panel cap-
turing approximately 50 mutations per patient was designed and
used to track mutated tumor DNA in plasma and urine. A total of
447 plasma samples, 281 urine supernatants, and 123 urine pellets
collected before, during, and after treatment were analyzed. Patients
were enrolled from 2013 to 2019, with a median follow-up time of
41.3 months after RC.

Results: We identified tumor DNA before NAC in 89% of
urine supernatants, 85% of urine pellets, and 43% of plasma

samples. Tumor DNA levels were higher in urine supernatants
and urine pellets compared with plasma samples (P < 0.001).
In plasma, detection of circulating tumor DNA (ctDNA)
before NAC was associated with a lower NAC response rate
(P < 0.001). Detection of tumor DNA after NAC was associated
with lower response rates in plasma, urine supernatant, and
urine pellet (P < 0.001, P ¼ 0.03, P ¼ 0.002). Tumor DNA
dynamics during NAC was predictive of NAC response and
outcome in urine supernatant and plasma (P ¼ 0.006 and
P ¼ 0.002). A combined measure from plasma and urine super-
natant tumor DNA dynamics stratified patients by outcome
(P ¼ 0.003).

Conclusions: Analysis of tumor DNA in plasma and urine
samples both separately and combined has a potential to predict
treatment response and outcome.

Introduction
Localized muscle-invasive bladder cancer (MIBC) is a common

malignancy with approximately 570,000 cases diagnosed globally in
2020 (1). The standard treatment regimen is neoadjuvant chemother-
apy (NAC) followed by radical cystectomy (RC); however, approxi-
mately 50% of patients experience disease recurrence following sur-
gery (2). The current NAC response evaluation consists of a patho-
logical assessment of the surgically removed bladder and adjacent
lymph nodes, and thereby inherently lacks the potential to identify
patients where a change in treatment regimen might be favorable.
Recent studies have identified improved outcomes for patients
responding to NAC, in particular if pathological complete response

(pCR, pT0N0) is achieved (3). However, meta-analyses have observed
pCR in only approximately 25% of patients and pathological down-
staging (¼ <pTisT0TaN0) in approximately 50% and considerable
overtreatment might therefore be taking place (4, 5). In addition, a
large meta-analysis identified a 5% improved survival rate for patients
treated with NAC compared with non-treated patients (6). Studies
using a tumor-centric approach for prediction of NAC response have
identified genomic alterations in DNA damage repair pathways
and genomic instability to be associated with an increased likelihood
of response (7–10). Gene expression subtypes have also been associ-
ated with NAC response; however, conflicting results have been
reported (10–13). No molecular markers have yet entered into clinical
practice, although a clinical trial aiming to demonstrate an association
between NAC response and mutations in DNA damage repair path-
ways is ongoing (NCT03609216).

Circulating tumor DNA (ctDNA) has emerged as a powerful
biomarker reflecting tumor invasiveness and patient outcome in
multiple cancers, includingMIBC (14–17). We recently demonstrated
that ctDNA dynamics in plasma samples during treatment with NAC
reflect treatment response, indicating that ctDNA measurements
during treatment could provide a measure of response before RC is
carried out (18). A study by Chauhan and colleagues (19) investigated
urinary tumor–derived DNA (utDNA) from samples collected before
RC and identified higher levels among patients without NAC response
compared with those with response. Patel and colleagues (20) have
similarly demonstrated persistence of utDNA during NAC to be
associated with recurrence after RC. However, previous studies focus-
ing on NAC response and urine samples have been conducted in small
cohorts. Here, we present a larger study on 92 patients with MIBC
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focusing on analysis of tumor DNA in paired plasma and urine
samples to investigate the potential for NAC response prediction.

Materials and Methods
Patient cohort

A total of 92 patients treated with NAC before RC were pro-
spectively enrolled between 2014 and 2019 at Aarhus University
Hospital (Aarhus, Denmark). Treatment and surveillance was done
in accordance with Danish national guidelines, as previously
described (18). Whole-exome sequencing (WES) and plasma data
for 56/92 patients were generated previously (18). Summarized
metrics for WES data is available in Supplementary Table S1.
Pathological downstaging, as evaluated from the RC specimen, was
defined as pT0/Ta/TisN0. Only patients with plasma and/or urine
supernatants and/or urine pellets were included in the study.
Detailed follow-up data were available for all patients (Supplemen-
tary Table S2). Recurrence data were obtained from CT scans or
pathology reports and survival data were obtained from the nation-
wide civil registry. All patients provided informed written consent,
and the study was approved by The National Committee on Health
Research Ethics (#1302183). Study data were collected and managed
using REDCap hosted at Aarhus University (21, 22).

Clinical samples
Tissue samples forWES were obtained from transurethral resection

of the bladder (TURB) at the time of diagnosis (n ¼ 90) or from RC
specimens (n¼ 2). In addition, 32 tissue samples from RC specimens,
with paired TURB tissue available, were included for mutation track-
ing over time. DNA was extracted from sections of Tissue-Tek O.C.T
Compound-embedded tissue or punches of formalin-fixed paraffin-
embedded tissue (FFPE) using a Puregene DNA purification kit
(Gentra Systems), the QIAamp DNA FFPE tissue kit or Allprep
DNA/RNA Kit (QIAGEN). Leukocyte DNA was extracted from the
buffy coat from all patients using the QIAsymphony DSP DNA midi
kit (QIAGEN). Urine and plasma sample processing, storage, and
DNA extractionwere performed as previously described (18, 23, 24). A
median of 4mL plasma (range, 2.5–4mL) and 4mL urine supernatant
(range, 2.9–5 mL) was used for extraction of cell-free DNA (cfDNA)
yielding a median of 9.0 ng/mL for plasma samples and 1.7 ng/mL for
urine supernatants.

WES
WES was performed using Twist Enzymatic Fragmentation Library

prep andHumanCore ExomeCapture kit. Samples were sequenced on
an Illumina Novaseq 6000. Samples from 56 patients included from
Christensen and colleagues (18), were subjected to library preparation

using Kapa HyperPrep and captured using SeqCap EZ MedExome or
MedExomePlus. These samples were sequenced on an Illumina Next-
Seq 500. Raw sequencing data were initially processed using bcl2fastq2
and Trim Galore!/cutadapt (hg19/hg38 processing, CRAN, RRID:
SCR_011847). FastQ files were processed according to the GATK
Best Practices (25): Alignment using bwa-mem, marking of duplicate
reads using Picard, base recalibration using GATK(RRID:
SCR_001876), quality metrics were assessed using Picard. Mutations
were identified using MuTect2 with default parameters except the
threshold for maximum alternate alleles in the germline was raised. A
custom filter selecting variants only vastly more present in the tumor
and in regions with low noise, was subsequently applied (26). Fur-
thermore, variants identified byMuTect2 that did not pass the built-in
filters were reintroduced if they were identified with high confidence
using VarScan2/Strelka (hg19/hg38 processing, https://github.com/
Jeltje/varscan2; refs. 27, 28). All somatic alterations were annotated
using annovar (29). Summarized metrics for WES data is available in
Supplementary Table S1.

Liquid biopsy sequencing and tumor DNA detection
To increase sequencing depth, and simultaneously limit sequencing

costs, the patient cohort was split in two before patient-specific panel
design. Two panels were designed on the basis of WES data for each
subcohort. Panel 1 covered a total of 2,474 unique genomic positions
(50 patients), resulting in 50 positions of interest per patient. Panel 2
covered a total of 2,087 unique genomic positions (42 patients),
resulting in 43–50 positions of interest per patient. Using 2 panels
instead of one increased the sequencing depth and reduced the
sequencing cost by approximately 50%. DNA extracted from liquid
biopsies was subjected to Twist Bioscience Mechanical Fragmentation
Library preparation. The adapters were replaced with xGen UDI-UMI
adapters (Integrated DNA Technologies) to incorporate unique
molecular identifiers (UMI) for reducing the error rate. DNA extracted
from urine pellets was fragmented before library preparation to a
fragment size of approximately 350 bp using the Twist Library
Preparation Enzymatic Fragmentation Kit 1.0 (Twist Bioscience). A
median DNA input of 39.5 ng (range, 5.7–258 ng), 50 ng (range, 4–50
ng), and 7.6 ng (range, 0.2–110 ng) was used for library preparation for
plasma samples, urine pellets, and urine supernatants, respectively.
The enrichment process was carried out using Twist Bioscience Target
Enrichment Protocol and the described custom panels. The libraries
were paired end sequenced (2�150 bp) on the illumina NovaSeq 6000
sequencer. UMI consensus base calls were performed using the fgbio
tool package(http://fulcrumgenomics.github.io/fgbio/; ref. 30). Sam-
ples were sequenced tomedian target coverages of 3,346X, 1,560X, and
2,588X for plasma, urine pellet, and urine supernatant, respectively,
after UMI consensus collapsing. The overlapping parts of read pairs
were only counted once.

Custom panel design
For selection, mutations were initially filtered to enrich statistically

convincingmutations. Amaximumof 1mutation-containing readwas
allowed in the associated germline unless at least 20 times as many
mutation-containing reads were identified in the tumor sample.
Furthermore, a minimum read-depth of 10 for both the tumor and
germline samples was set.We leveraged previously generated sequenc-
ing data using identical sequencing chemistry, but different genomic
positions targeted (described in ref. 31). C>T/G>A mutations were
frequently observed at positions with no expected mutations. In
addition, the trinucleotide contexts “NCG” and “CGN”were frequent-
ly mutated. In samples from patients with MIBC, C>T mutations are

Translational Relevance

About 45% of patients with localized muscle-invasive bladder
cancer treated with neoadjuvant chemotherapy (NAC) and radical
cystectomy will develop metastasis within 2 years. The predictive
value ofmonitoring cell-free urineDNA in this setting has not been
investigated, and the added value of combined plasma DNA
analysis is currently not known. Here, we report a combined
tumor-informed analysis of urinary and plasma DNA mutations
to investigate the potential for NAC response and outcome
prediction.

Predictive Value of Urine and Plasma DNA Mutations in MIBC
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the most commonly observed accounting for 51% of mutations in
TCGA data (32). Therefore, the top 10 mutations per patient based on
the log odds score derived fromMutect2 (33), reflecting the probability
of the variant being a true mutation, were prioritized regardless of the
mutational context. Furthermore, up to 10 mutations assessed as
damaging (Polyphen2: possibly/probably damaging or MutationAs-
sessor: medium/high; refs. 34, 35), were included per patient in the
panel. Thesewere prioritized on the basis of the variant allele frequency
(VAF) and only included if the VAF was above the 1st quartile for the
VAF of the sample in question to limit the selection of subclonal
mutations. Similarly, up to 10 mutations in genes associated with
bladder cancer [bladder cancer driver genes from (ref. 36) and
significantly mutated genes in (ref. 32)] were selected if the VAF was
above the 1st quartile. In addition, two TERT promoter mutations,
which are frequently observed in patients with bladder cancer (37),
were added to both panels. Collectively, themutation selection process
thereby serves to limit the error-rate of included genomic positions
while optimizing themutation selection to contain themutationsmost
likely to be clonal and impactful. Panel 1 was designed on the basis of
hg19-alignedWES data and panel 2 was designed on the basis of hg38-
aligned WES data. For comparative analyses, the panel 1 positions
were carried over to hg38 using the R package rtracklayer (38).

Custom panel variant calling pipeline
The inclusion of genomic positions associated with multiple

patients on every custom panel facilitates an abundance of sequencing
data for every genomic position with no mutations expected to be
present. These data can serve to build a background error model. To
achieve this, we used an analysis framework based on a maximum
likelihood implementation of the shearwater algorithm developed by
Gerstung and colleagues (39). Data generated from liquid biopsy
samples were initially split by sample type before generating error
models. For analysis of mutations for every patient, all data generated
for a liquid biopsy type were loaded and other samples originating
from the same patient were discarded. Following, the genomic posi-

tions associated with a patient were selected and base counts were
generated for all samples of the given type. Only readswith aminimum
mapping quality of 20 and bases with a minimum quality of 20 were
considered. The presumably non-mutated data were fitted to a bino-
mial distribution with site-specific calculation of the dispersion, as
described by Gerstung and colleagues (39). Presumably mutated data,
that is, data from the target patient, were assessed for a statistical
significant difference compared with the background error model,
resulting in P values. Only base changes expected on the basis of the
mutation selection for the target enrichment were considered. Samples
with a VAF above 25% were excluded when generating the error-
model. Genomic positions with an average VAF above 10% across all
considered samples and/or a read-depth below 50 in the target sample
were excluded. P values were corrected for multiple testing using the
Benjamini–Hochberg procedure and adjusted P values below 0.05
were considered significant.

The sample-wise tumor-derived DNA (tdDNA) signal strength
was assessed using the Fisher’s method on the target positions of a
given patient and compared with the results of the Fisher’s method
applied to a random selection of 50 mutations of all non-target
mutations in the panel 10,000 times. A sample was categorized as
tdDNA positive only if the results of the Fisher’s method were the
relatively strongest when comparedwith the 10,000 random selections.
Mean sample VAF was defined as the mean VAF of all mutations that
were significant after adjusting for multiple testing. For samples with
no significant mutations after adjusting for multiple testing, but with a
sample-wise positive tdDNAcall, themean sampleVAFwas defined as
the mean VAF for all mutations with unadjusted P values below 0.1.

Estimation of limit of detection
We generated in silico sample counts to assess the limit of detection

(LOD) at every position for all included sample types. To accomplish
this, we performed the initial steps of the shearwater-based calling
algorithm (39), but replaced the counts from the target sample with in
silico counts representing 1–25 reads. A random sample was used to
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Figure 1.

Study andmethodology overview.A, The study includes patients treated formuscle-invasive bladder cancer (MIBC). Upon diagnosis, a tumor sample obtained from
transurethral resection of the bladder and a germline sample were subjected to whole-exome sequencing (WES). Approximately 50 somatic variants were selected
per patient for design of two custom NGS panels based on 50 and 42 patients. Plasma and urine samples were collected before, during, and after treatment with
neoadjuvant chemotherapy. B, Illustration of the custom panel NGS data, exemplified using only five patients. For every single mutation, an error model was
constructed on the basis of data from the samples not associated with that given mutation. This was used to test for significance in the sample associated with that
given mutation. Furthermore, a sample-wise test was performed for every sample by applying the Fisher’s method to P values obtained for all mutations associated
with that sample. A random selection of 50 othermutations from the panel not associatedwith the given samplewas similarly assessed using the Fishermethod. This
was repeated 10,000 times, and only samples with a score higher than all random selections were considered tumor DNA positive. (Created with BioRender.com.)
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determine ratios between forward and reverse read depth for every
position. The remainder of the calling pipeline was then carried out
and the minimum number of reads required to reach statistical
significance was determined for every position. On the basis of the
predetermined read depth of the in silico sample, the LOD was then
calculated (Supplementary Fig. S1). The specified LODs for the
different sample types were inferred on the basis of the mean LOD
for the closest of the queried read depths. In addition, the LOD varied
across the different base changes with C>T demonstrating the poorest
LOD (Supplementary Fig. S1, read depth fixed at 3,000X).

Assessment of changes in the tumor mutational landscape
during NAC

We performed WES of DNA from tumor tissue obtained from
RC specimens for 32 patients to assess the mutational changes that

occurred during treatment with NAC. We observed a median of 708
mutations in these tumors and a median of 1,295 mutations in the
associated primary tumors. Only an average of 16.4% of mutations
observed in primary tumors were detected in tumors from RC
specimens, underlining the importance of selecting mutations from
treatment naive tumors (Supplementary Fig. S2). Similarly, a medi-
an of 19 (IQR, 0–31) of the panel mutations were identified in RC
tumors, probably caused by a lower tumor cell percentage in RC
tumors as reflected by lower 90th percentile VAFs (Supplementary
Fig. S2).

Statistical analyses
Statistical significancewas assessed by performing aWilcoxon rank-

sum test for continuous non-paired variables, aWilcoxon signed rank-
sum test for continuous paired variables and a Fisher’s exact test for
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Measurements of tumor DNA across sample types. A and B, The fraction of samples positive for tumor DNA by sample type. A, All samples (P, n ¼ 99/447; UP,
n¼ 89/123; US, n¼ 209/281) and (B) samples collected before neoadjuvant chemotherapy (NAC; P, n¼ 52/120; UP, n¼ 40/47; US, n¼ 82/92).C andD,Mean sample
VAF levels for samples with detectable tumor DNA split by sample type. C, All samples (P, n ¼ 99; UP, n¼ 89; US, n ¼ 209) and (D) samples collected before NAC
(P, n¼ 52; UP, n¼ 40; US, n¼ 82). P values were calculated using aWilcoxon rank-sum test. E–G,Mean sample VAF levels for comparison of all sample types. Only
samples from clinical visits with at least 2 sample types available were included. H,Mean sample VAF level for urine supernatants split by ctDNA call status (348 not
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categorical variables. Sample level assessment of tumor DNA status
was performed using the Fisher’s method. Survival analyses were
carried out in R using packages survminer and survival (https://
cran.r-project.org).

Data availability
The raw sequencing data generated in this study are not publicly

available as this compromises patient consent and ethics regulations in
Denmark. Processed non-sensitive data are available upon reasonable
request from the corresponding author.

Results
Patients and methodology

In total, 92 patients treatedwithNAC forMIBCwere included in the
study. Ninety-one patients underwent RC after NAC and 61% showed
pathological downstaging (53% complete response, pT0N0). Median
follow-up after RC was 41.3 months. Tumor and germline DNA was
subjected to WES for identification of somatic variants with a median
target coverage of 114X for tumor and 73X for germline samples. The
study builds on previously published tissue-based WES and plasma
sample-based data for 56 patients (18). Here, we extended the cohort
with an additional 36 patients with plasma-based analyses (n ¼ 159)
and included urine supernatant (n ¼ 281) and urine pellet (n ¼ 123)
analyses (Supplementary Fig. S1). For the extended cohort and new
samples, we used a tumor-informed patient-specific strategy for
detection of tumor DNA based on selection of approximately 50
mutations per patient from WES data for design of a custom NGS
panel (Fig. 1A). Consequently, all selected mutations were patient-
specific andwere not shared between patients. Plasma and urine-based
samples were subsequently subjected to targeted sequencing. Analysis
of tumorDNAwas performed on amutation-wise level based on error-
models of all relevant genomic positions and an integrated sample-
level assessment for tumor DNA positivity (Fig. 1B). The LOD was
determined to be approximately 0.05%, 0.10%, and 0.09% for plasma,
urine pellet, and urine supernatant, respectively (Supplementary
Fig. S1).

Tumor DNA detection across sample types
The tumor DNA detection frequency varied between sample types

and was higher in urine supernatants and pellets compared with
plasma samples (Fig. 2A). For tumor DNA-tracking purposes (tumor
DNA dynamics), detection of tumor DNA before initiation of NAC is
necessary, and here we similarly observed tumor DNA to be present
more frequently in urine supernatants and pellets compared with
plasma samples (Fig. 2B). In line with this observation, we found the
level of tumor DNA to be higher in urine supernatants and pellets
comparedwith plasma samples bothwhen considering all samples and
only samples before NAC (Fig. 2C and D).

Urine supernatants and plasma demonstrated a weak correlation
and a sample concordance in tumor DNA status of 46.0%, with

urine supernatants more often containing utDNA compared with
plasma (rho ¼ 0.41, Fig. 2E). Tumor DNA levels in urine super-
natants and urine pellets were highly correlated and 91.7% of
samples were concordant in terms of tumor DNA status (rho ¼
0.78, Fig. 2F).

Urine pellet tumor DNA status also showed a weak correlation to
plasma, as expected (43.1% concordance, rho ¼ 0.15, Fig. 2G). Inter-
estingly, for visits with ctDNA presence in plasma, the associated urine
supernatants displayed significantly higher levels of utDNA (Fig. 2H),
which could be an indication of renal clearance of ctDNA from the
plasma or simply a reflection of a large invasive tumor. However, no
other comparisons with adjustment for tumor DNA status were
significant (Supplementary Fig. S3).

We investigated whether the tumor DNA assay performance was
highly dependent on the amount of extracted DNA and, more
importantly, on the library input. Importantly, we did not find that
tumor DNA positivity was associated with higher amounts of DNA
input (Supplementary Figs. S4 and S5).

We analyzed urine dipstick data that were collected at the same
time as urine supernatants to investigate urine parameters affect-
ing DNA mutation calling. On the basis of 72 cases of paired urine
supernatant and urine dipstick data, we identified the levels of
leukocytes, nitrite, protein, and erythrocytes to be associated with
the level of cfDNA (Supplementary Fig. S6). However, only the
level of erythrocytes was associated with the tumor DNA positive
call status of samples and the level of tumor DNA (Supplementary
Figs. S7 and S8), indicating that DNA mutation calling was not
affected with wild-type DNA contamination. Furthermore, it
indicated that patients with blood in the urine may have a higher
tumor burden.

Tumor DNA measurements compared with tumor burden and
patient outcome

We observed ctDNA plasma sample positivity in 46% and 50% of
visits with concurrent T2–4 tumors before and after NAC, respectively
(Fig. 3A and B). Of note, only samples drawn from patients with
muscle-invasive tumors at diagnosis and at the time of RC were
positive for plasma ctDNA (Fig. 3A and B). In urine pellets and urine
supernatants, tumor DNA sample-positivity rates before NAC were
86% and 91% for T2–4 tumors, respectively (Fig. 3A), and varied
across tumor stages after NAC (Fig. 3B).

Sensitivity and specificity measures for urine pellet and urine
supernatant analyses for detection of residual tumor were relatively
low, and probably highlights that urine may be more or less concen-
trated, with variable test results as a consequence (UP: sensitivity ¼
79%; specificity ¼ 56%: US: sensitivity ¼ 72%; specificity ¼ 65%).

In urine-based samples, the levels of tumor DNA were equal across
tumor stages (Fig. 3C andD). This could be due to urine-based tumor
DNA primarily reflecting tumor exposure in the bladder lumen and
less so the invasiveness of the tumor. In line with this, tumor DNAwas
always detected in both urine supernatants and pellets, when only

Figure 3.
Tumor DNA status before and after neoadjuvant chemotherapy compared with tumor stage and outcome.A and B, Fraction of patients positive for tumor DNA split
by sample type and tumor stage. A, Tumor stage evaluation based on transurethral resection of the bladder (TURB) specimen and tumor DNA status based
on samples collected before NAC. B, Tumor stage evaluation based on radical cystectomy (RC) specimen and tumor DNA status based on samples collected after
NAC and before RC. C and D, Mean sample VAF levels for all patients with detectable tumor DNA split by sample type and tumor stage. C, Tumor stage evaluation
based on TURB specimen and tumor DNA level based on samples collected before NAC. P values were calculated using a Wilcoxon rank-sum test. D, Tumor stage
evaluation based on RC specimen and tumor DNA level based on samples collected after NAC and before RC. P values were calculated using a Kruskal–Wallis test.
E and F, Tumor DNA status compared with response to treatment with NAC for all analyzed sample types. E, Tumor DNA status determined before NAC. F, Tumor
DNA status determined after NAC.
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considering samples collected before TURB (Supplementary Fig. S9).
In addition, we observed an association between NAC response
and plasma ctDNA status both before and after NAC, and only
after NAC for urine supernatants and urine pellets (Fig. 3E and F).
Only plasma ctDNA status before and after NAC was associated
with recurrence-free survival (RFS; Supplementary Fig. S10).
Dichotomization of samples based on sample-type–specific median
VAFs, demonstrated an association between the level of ctDNA and
NAC response for plasma collected both before and after NAC,
but not for tumor DNA from urine supernatants and pellets
(Supplementary Fig. S11). The level of ctDNA in plasma samples
collected both before and after NAC and for utDNA in urine
supernatants after NAC was furthermore associated with RFS
(Supplementary Fig. S12).

Tumor DNA liquid biopsy dynamics and treatment response
The tumor DNA dynamics during NAC (tumor DNA either

remained detectable or was cleared) for plasma samples remained
significantly associated with NAC response (18) in this extended
cohort (Fig. 4A). utDNA dynamics for urine supernatants was also
significantly associatedwithNACresponse, but not tdDNA fromurine
pellets (Fig. 4B and C and Supplementary Fig. S13). The response
assessment for NAC reflects the local tumor response (pathological
evaluation), so we next investigated the outcomes of the patients
following RC to assess the response on distantmicrometastatic disease.
Here, we found that plasma ctDNA dynamics was strongly associated
with RFS with particularly poor outcome for patients where ctDNA
remained detectable (Fig. 4D). We did not observe an association
between RFS and urine pellet tdDNA dynamics (Fig. 4E). For urine
supernatants, as for plasma, we observed a strong association with RFS
and a remarkable recurrence rate of 0% for patients with utDNA
clearance (Fig. 4F). Interestingly, a combination of tumor DNA
dynamics of plasma samples and urine supernatants showed concor-
dance in 71% (17/24) of patients (Fig. 4G). The combination showed a
potential for treatment response monitoring with concordant tumor
DNA dynamics being associated with response to treatment (Fig. 4H)
and for risk stratification of patients, as demonstrated by the difference
in RFS (Fig. 4I).

The overall effect of NAC was reflected by a decrease in detectable
mutations in residual tumors from RC compared with the primary
tumor (See Materials and Methods and Supplementary Fig. S2).

Discussion
Treatment with NAC represents a clinical scenario in need of real-

timemonitoring to assess whether treatment is effective or initiation of
alternative treatment would be optimal. Plasma samples have dem-
onstrated promising utility based on a strong association between
clearance of ctDNA and response to NAC, which importantly can be
evaluated before RC is carried out (18). In addition, plasma ctDNA
clearance has been associated with improved outcome following
RC (18). These observations were further substantiated with the
expanded patient cohort in this study. Noteworthy, tracking of
ctDNA in plasma samples during treatment is only possible in the
subset of patients with detectable ctDNA before initiation of NAC
treatment, which in this study amounted to approximately 43%. This
number could also point to the patients that actually need systemic
treatment because of disseminated disease.However, it is not clear how
well the ctDNA detection methods actually capture micrometastatic
disease. A recent study indicated that current methods may only
capture relatively large metastatic lesions (40). The similar positive

detection rates reached 85% and 89% for urine pellets and super-
natants, respectively. This highlights that urine samples could provide
a critical component in liquid biopsy-based treatment monitoring for
patients with MIBC treated with NAC simply based on the markedly
higher detection rates. Importantly, we demonstrated an association
between utDNA dynamics in urine supernatants and a similar trend in
tdDNA from urine pellets pointing to a potential future role for urine-
based treatment response monitoring. Interestingly, we observed a
particularly good outcome for patients with urine supernatant utDNA
clearance. This observation persisted when combining plasma and
urine supernatant tumor DNAmeasurements and highlights a poten-
tially predictive and prognostic value of a combinatorial liquid biopsy-
based approach formonitoring of response, where a local and systemic
response measure is used in combination. However, the observations
require validation in larger prospective cohorts. Surprisingly, tumor
DNA was identified in both urine supernatants and pellets in samples
obtained at visits with no concurrent tumors. This might be due to
tumor lesions being missed or from release of tumor DNA from
mutant clones present in presumably normal appearing urothe-
lium (41). However, recent studies using next-generation sequencing
or digital droplet PCR have identified utDNA obtained at visits
with no concurrent tumor or concurrent low-grade non-invasive
tumors (23, 31, 42). In addition, utDNA was not identified in a subset
of samples obtained at visits with MIBC. This has similarly been
observed in a recent study by Chauhan and colleagues (19); however,
the panel-based approach for tumorDNAdetection in this study could
imply that the lack of tumor DNA detection is for technical reasons,
that is, tumor-specific variants were not queried. Furthermore, urine
samples represent a sample type with inherent variability in com-
position and concentration, which both could have implications for
the level and detectability of tumor DNA, which is also reflected in
the urine test sensitivities and specificities observed in this study.
Interestingly, we observed no variation in tumor DNA detection
rates and tumor DNA level across a wide range of cfDNA amounts.
However, we did observe a correlation between cfDNA levels and
several parameters assessed using urine dipstick data. The eryth-
rocyte level was in line with this associated with the utDNA call
status of samples that aligns with hematuria as a frequent symptom
of bladder cancer. Collectively, this demonstrates the extraordinary
challenges created by the highly variable composition of urine
samples. Future studies of urine-based liquid biopsy analysis should
pursue further optimization of collection timing and procedures. A
limitation to the study is the different technologies applied for
plasma ctDNA analysis. Both use a patient-specific mutation selec-
tion approach based on WES data followed by targeted enrichment
and sequencing, but differ in the enrichment strategies, variant
calling, and read-depth. Consequently, there are differences in the
LOD of the applied methods. Importantly, all samples from single
patients were analyzed with the same method.

In conclusion, we assess the potential for treatment response and
outcome prediction by liquid biopsies collected in the pre-surgical
setting for patients with MIBC. We validated previously observed
prognostic and predictive features of plasma ctDNA analysis and
similarly demonstrated prognostic and predictive power for urine
supernatant utDNA dynamics based on samples collected before,
during and after NAC treatment. Importantly, tumor DNA dynamics
analysis provides a real-time assessment that could provide clinicians
with information on treatment efficacy during treatment. This may
ultimately be used for guiding treatment continuation and potentially
to inform about bladder sparing strategies. However, these scenarios
need to be tested in new clinical trials.
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Figure 4.

Tumor DNA dynamics correlate with treatment response and outcome. A–C, Association between tumor DNA dynamics and neoadjuvant chemotherapy (NAC)
response for (A) plasma, (B) urine pellet, and (C) urine supernatant. Tumor DNA clearance was defined as tumor DNA going from detectable to non-detectable and
tumor DNA remains was defined as tumor DNA remaining detectable. D–F, Kaplan–Meier survival analysis of tumor DNA dynamics groups and recurrence-free
survival (RFS) for (D) plasma, (E) urine pellet, and (F) urine supernatant. G, Detailed overview of tumor DNA dynamics during NAC for patients with information
available for both plasma and urine supernatant. Overviews were split according to sample type and agreement between sample-type tumor DNA dynamics.
H, Association between combined plasma and urine supernatant tumor DNA dynamics and NAC response. I, Kaplan–Meier survival analysis of combined plasma
and urine supernatant tumor DNA dynamics groups and RFS.
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