

General Rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and
investigate your claim.

If the document is published under a Creative Commons license, this applies instead of the general rights.

This cover sheet template is made available by AU Library
Version 2.1, September 2020

Cover sheet

This is the accepted manuscript (post-print version) of the article.
The content in the accepted manuscript version is identical to the final published version, although
typography and layout may differ.

How to cite this publication
Please cite the final published version:

Olsen, M., Andersen, L. N., & Gross, A. (2023). An asymptotically optimal algorithm for online
stacking. Mathematical Methods of Operations Research, 97(2), 161-
178. https://doi.org/10.1007/s00186-022-00808-7

Publication metadata

Title: An asymptotically optimal algorithm for online stacking
Author(s): Olsen, M., Andersen, L. N., & Gross, A.
Journal: Mathematical Methods of Operations Research
DOI/Link: https://doi.org/10.1007/s00186-022-00808-7
Document version:
Document license:

Accepted manuscript (post-print)

Dette værk er licenseret under en Creative Commons Kreditering 4.0 International-licens.

https://doi.org/10.1007/s00186-022-00808-7
https://doi.org/10.1007/s00186-022-00808-7

Noname manuscript No.
(will be inserted by the editor)

An Asymptotically Optimal Algorithm for Online
Stacking?

Martin Olsen · Lars Nørvang Andersen ·
Allan Gross

the date of receipt and acceptance should be inserted later

Abstract Consider a storage area where arriving items are stored temporarily
in bounded capacity stacks until their departure. We look into the problem of
deciding where to put an arriving item with the objective of minimizing the
maximum number of stacks used over time. The decision has to be made as
soon as an item arrives, and we assume that we only have information on the
departure times for the arriving item and the items currently at the storage
area. We are only allowed to put an item on top of another item if the item
below departs at a later time. We refer to this problem as online stacking. We
assume that the storage time intervals are picked i.i.d. from [0, 1]× [0, 1] using
an unknown distribution with a bounded probability density function. Under
this mild condition, we present a simple polynomial time online algorithm and
show that the competitive ratio converges to 1 in probability. The result holds
if the stack capacity is o(

√
n), where n is the number of items, including the

realistic case where the capacity is a constant. Our experiments show that our
results also have practical relevance.

Keywords Online algorithms · Stacking · Stowage · Asymptotic optimality

? A preliminary version of this paper appeared in the proceedings of the 6th International
Conference on Computational Logistics, ICCL ’15, under the title ”Probabilistic Analysis
of Online Stacking Algorithms” [13].

M. Olsen · A. Gross
Department of Business Development and Technology
Aarhus University
Denmark
E-mail: martino@btech.au.dk, agr@btech.au.dk

L. N. Andersen
Department of Mathematics
Aarhus University
Denmark
E-mail: larsa@math.au.dk

2 Martin Olsen et al.

1 Introduction

In this paper, we consider the situation that some items arrive at a storage lo-
cation where they are temporarily stored in LIFO stacks until their departure.
When an item arrives, we are faced with the problem of deciding where to store
the item. We will refer to this problem as the stacking problem. The stack-
ing problem has many applications within real-world logistics. As an example,
the items could be containers, and the storage location could be a container
terminal or a container ship [4]. The items could also be steel bars [16] and
trains [7], or the storage location could simply be a warehouse storing any type
of objects stacked on top of each other.

We focus on the variant of the stacking problem given by the following
assumptions: 1) We have to make a decision on where to store an item as
soon as it arrives. When an item i arrives at time xi, we are informed on the
departure time yi of the item, but we have no information on future items.
In other words, we look at an online version of the problem, and we look for
online algorithms solving the problem. 2) The numbers xi and yi could be
any real numbers. This means that we restrict our attention to what we will
refer to as the continuous case as opposed to the discrete case, where we only
have a few possibilities for xi and yi. 3) We are only allowed to put an item
i on top of an item j if yi ≤ yj . Another way of saying this is that we do
not allow rehandling/relocations/overstowage of items. 4) The objective is to
minimize the maximum number of stacks in use over time given a bound h on
the stacking height.

1.1 Contribution

We use the unknown distribution model for generating stacking problem in-
stances, where the time intervals for storing the items are picked i.i.d. using
an unknown distribution with bounded density:

Definition 1 The Unknown Distribution Model: Let n pairs (a, b) ∈
[0, 1] × [0, 1] be drawn i.i.d. using an unknown distribution with a bounded
probability density function. For each pair (a, b), let an item arrive at the
storage area at time x = min(a, b) and leave the storage area at time y =
max(a, b).

If the reader prefers a model satisfying a < b, we can use a density f with
f(a, b) = 0 for a ≥ b. It is very common to use distributions with bounded
densities to model real scenarios. For the univariate case, some examples of
such distributions are uniform distributions, triangular distributions, and beta
distributions with parameters greater than or equal to one. Assuming inde-
pendence seems to be reasonable when items arrive at the storage area from
different sources. This shows that our model is applicable for many realistic
scenarios.

The main contribution of our paper is a simple polynomial time online
algorithm called, for the lack of a better name, “Algorithm Online” for which

An Asymptotically Optimal Algorithm for Online Stacking? 3

the following theorem holds, where χh ≡ χh,n (suppressing the dependence
on n in our notation) denotes the optimal number of stacks and χ′h ≡ χ′h,n
denotes the number of stacks used by the algorithm (the stacking problem is
formally defined in Definition 2 in Sec. 2.1).

Theorem 1 For the unknown distribution model, Algorithm Online produces
a solution for the online stacking problem such that

lim
n→∞

P

(
1 ≤ χ′h

χh
≤ 1 +O(hn−

1
2)

)
= 1 . (1)

Algorithm Online processes one item in O(log n) time.

The following corollary is immediate:

Corollary 1 If the stack capacity satisfies h = o(
√
n) (including the realistic

case where h is a fixed constant) then the competitive ratio of Algorithm Online
converges to 1 in probability:

χ′h
χh

p−→ 1 for n→∞ .

Furthermore, if h is constant we will argue later that the competitive ratio is
bounded and we have the following:

Corollary 2 If h is a constant, then the expected value of the competitive ratio
for Algorithm Online converges to 1 in the standard sense of convergence:

E

(
χ′h
χh

)
→ 1 for n→∞ .

To the best of our knowledge, we are the first to present an asymptotically
optimal polynomial time online algorithm for stacking – an offline version
has not been presented either. Algorithm Online has not been been presented
earlier in the literature but similar algorithms have appeared [4,8,9,18]. No
formal proof of asymptotic optimality for an online stacking algorithm has
appeared earlier, so the most important part of the contribution is the formal
proof of asymptotic optimality under mild conditions.

We also verify the results experimentally using two types of distributions

and instances with 2000 ≤ n ≤ 200000 and h = 5. For all our instances,
χ′
h

χh
≤

1 + kn−
1
2 for a moderate constant k depending on the distribution involved,

indicating that our results also have practical importance. The biggest k values
were around 30 for the distributions in our experiments.

4 Martin Olsen et al.

1.2 Related Work

A preliminary version of this paper [13] was presented at the conference ICCL
2015. The results in the present version are more generic and stronger since
they are based on the unknown distribution model as compared to the results
obtained in the preliminary version, which were based on a uniform distri-
bution on the input. The present version furthermore includes a section with
experiments.

The offline variant of the stacking problem where all information is pro-
vided before any decisions are made is NP-hard for any fixed bound h ≥ 6 on
the stacking height [5] as can be seen by reduction from the coloring problem
on permutation graphs [10]. To the best of our knowledge, the computational
complexity for the case 2 ≤ h ≤ 5 is an open problem for the offline case. This
variant of the problem is also NP-hard in the unbounded case as shown by
Avriel et al. [2]. Tierney et al. [17] show that the problem of deciding if it is
possible to accommodate all the items in a fixed number of bounded capacity
stacks without relocations can be solved in polynomial time, but the running
time of their offline algorithm is huge even for a small (fixed) number of stacks.

Cornelsen and Di Stefano [5] and Demange et al. [7] consider the problem in
the context of assigning tracks to trains arriving at a train station/depot. Cor-
nelsen and Di Stefano look at unbounded capacity stacks (train tracks) whereas
Demange et al. consider unbounded as well as bounded capacity stacks. For
unbounded stack capacity, Demange et al. show that no online stacking algo-
rithm has a constant competitive ratio. In addition, they present lower and
upper bounds for the competitive ratio with some improvements added later
by Demange and Olsen [6]. For bounded capacity stacks, Demange et al. [7]
show that 2− 1/min(h, χh) is a tight bound for the competitive ratio for on-
line stacking restricted to the situation where all trains are at the train depot
at some point in time. This condition is known as the midnight condition. It
is well-known that the stacking problem can be be solved exactly and online
in polynomial time for the unbounded stack capacity case with the midnight
condition by using the Patience Sorting method presented later in this paper.

Simple heuristics for online stacking similar to Algorithm Online have been
presented by Borgman et al. [4], Duinkerken et al. [8], Hamdi et al. [9], and
Wang et al. [18] without providing a proof of asymptotic optimality. Olsen
shows in [12] how Reinforcement Learning can be used to improve simple online
stacking heuristics. Finally, we mention the work of Rei and Pedroso [16] and
König et al. [11] on related problems within the steel industry as well as the
PhD thesis by Pacino [14] on container ship stowage.

1.3 Outline of the Paper

In Section 2, we look at the link between stacking problems and the coloring
problems for overlap graphs and interval graphs and introduce some termi-
nology used in this paper. We also consider some results from the field of

An Asymptotically Optimal Algorithm for Online Stacking? 5

probability theory that form the basis for the probabilistic analysis of our on-
line algorithm. Our algorithm is introduced in an offline and an online version
in Section 3. The analysis of the algorithm and our main result are presented
in Section 4, and finally, we verify our results experimentally in Section 5.

2 Preliminaries

In this section, we present the terminology used in this paper and some results
from probability theory, which we will use later.

2.1 Connections to Graph Coloring

For each item i, we have an interval Ii = [xi, yi] specifying the time interval for
which the item has to be temporarily stored. To make it easier to formulate the
constraint on the stacking height, we assume realistically that items cannot
arrive and depart at exactly the same time. This assumption is consistent with
the unknown distribution model that generates storage time intervals having
pairwise distinct endpoints with probability 1.

It is well-known that the problem we consider can be formulated as a
graph coloring problem [2], and we will use graph coloring terminology in the
remaining part of the paper in order to make the presentation generic. We
say that two intervals I1 = [x1, y1] and I2 = [x2, y2] overlap if and only if
x1 < x2 < y1 < y2 or x2 < x1 < y2 < y1. We can put an item on top of
another item if and only if their corresponding intervals do not overlap. Our
problem can now be formally defined as follows, where h is the maximum
allowed stack height:

Definition 2 The h-OVERLAP-COLORING problem:

– Instance: A set of n intervals I = {I1, I2, . . . , In}, where all the endpoints
of the intervals are distinct.

– Solution: A coloring of the intervals using a minimum number of colors
such that the following two conditions hold:
1. Any two overlapping intervals have different colors.
2. For any real number t and any color d, there will be no more than h

intervals with color d that contain t.

It should be stressed that we look for online algorithms that process the in-
tervals in order of increasing starting points.

The problem can be viewed as a graph coloring problem for the graph with
a vertex for each interval and an edge between any two vertices where the
corresponding intervals overlap. Such a graph is known as an overlap graph.
As mentioned earlier, we let χh denote the minimum number of colors for a
solution.

An interval graph is a graph in which each vertex corresponds to an interval
and with an edge between two vertices if and only if the corresponding intervals

6 Martin Olsen et al.

intersect. Note that two overlapping intervals intersect, but since the converse
is not necessarily true, the overlap graph will be a subgraph of the interval
graph. The classical greedy algorithm for graph coloring colors the vertices
sequentially and works as follows: If we can reuse a color, we do so – otherwise
we pick a new color that we have not used previously. The clique number of a
graph is the size of a maximum clique. It is well-known and quite obvious that
the greedy algorithm obtains a coloring with a number of colors corresponding
to the clique number when it processes an interval graph in increasing order of
the starting points of the intervals. It is also easy to see that we cannot obtain
a better coloring than this.

2.2 Increasing Subsequences and Patience Sorting

The algorithm we present in Section 3 and the probabilistic analysis performed
in Section 4 are based on some results from the theory on increasing subse-
quences and the method of Patience Sorting, which we will introduce next.
Patience Sorting [1] is a method originally invented for sorting a deck of cards.
Imagine that we have a deck of cards as follows, where the top of the deck is
the leftmost card (the underlined cards will be explained later):

9, 2, 4, 8, 1, 7, 6, 3, 5, 10

We take the top card 9 and start a new pile. We now remove the other cards
from the initial deck one by one from the top of the deck. Each time we remove
a card, we try to put it in another pile with a top card of higher value than the
removed card. If possible, we choose a pile where the top card has the lowest
value. If not, we start a new pile. Card 2 goes on top of card 9 but we have
to start two new piles with cards 4 and 8, respectively. Card 1 can be put on
top of card 2, etc. Finally, we face the following four piles:

1, 2, 9 3, 4 5, 6, 7, 8 10

It is now easy to sort the cards by repeatedly picking the top card with the
lowest value. This is the Patience Sorting method, and we refer the reader to
the work by Aldous [1] for more details.

Let Ln be the random variable representing the resulting number of piles
for the Patience Sorting method on a deck with n cards. It is worth noting
that Ln is identical to the length of the longest increasing subsequence for
the sequence of cards defined by the deck. To illustrate this, there are several
increasing subsequences that have length 4 for the sequence shown above (for
example, the subsequence 2, 4, 6, 10, which is underlined) but no increasing
subsequence with length 5 or more – and the number of piles needed is 4. Each
pile represents a decreasing subsequence, and Ln is also the minimum number
of decreasing subsequences into which the sequence can be partitioned. The
asymptotic behavior of Ln has been extensively studied and we will need the

An Asymptotically Optimal Algorithm for Online Stacking? 7

following result (eqn. (1.8) in [3]): For M > 0 sufficiently large there exists
d > 0 and D(M) ∈ R such that when M ≤ t

P (Ln > tn1/6 + 2
√
n) ≤ D(M)e−dt

3/5

(2)

Letting t = n1/3 in (2), we see that there exists constants D = D(M) ∈ R and
d > 0 such for that n sufficiently large it holds that

P (Ln > 3
√
n) ≤ De−dn

1/5

(3)

For further results on Ln, we refer to [1,15].
Before we present our stacking strategy, we need to introduce a little more

terminology. A chain of intervals is a sequence of intervals I1 ⊇ I2 ⊇ I3 ⊇
. . . ⊇ Im. The intervals in a chain represent items that may be stacked on top
of each other. We refer to the intervals I1 and Im as the bottom and the top of
the chain, respectively. For a given number h, we can split a chain into chains
of cardinality h or less in a natural way: The intervals I1 to Ih form the first
chain, the next h intervals Ih+1 to I2h form the next chain, etc. A partition of
I into chains is a set of chains such that each interval is a member of exactly
one chain.

3 The Algorithm

We present an offline and an online version of our algorithm named Offline and
Online, respectively, which produce the same coloring for any instance of the
h-OVERLAP-COLORING problem. Algorithm Offline is presented in order
to make it easier for the reader to understand the coloring strategy used.

We are now ready to describe Algorithm Offline, which consists of 4 steps
listed in Fig. 1. In the first step, we partition I into a minimum number c of
chains (the number c can be determined using Patience Sorting as described in
Lemma 1). This is illustrated in Fig. 2. In the second step, we split the chains
into chains of cardinality h or less as described above. The interval graph of the
bottoms of the chains is colored in the third step using the simple algorithm
described in Section 2.1. Finally, in the fourth step, all the remaining intervals
are colored with the color at the bottom of their chain. Steps 2, 3, and 4 are
illustrated in Fig. 3 for the case h = 2. It is not hard to see that the coloring
produced satisfies the conditions from Definition 2: All the chains produced in
step 2 have cardinality at most h, and chain bottoms with the same color do
not intersect.

We now prove that it is possible to transform Algorithm Offline into an on-
line version, Algorithm Online, which is listed in Fig. 4. One step of Algorithm
Online is also illustrated graphically in Fig. 5.

Lemma 1 Algorithm Online is an online algorithm for the h-OVERLAP-
COLORING problem producing a coloring identical to the coloring produced by
Algorithm Offline. Algorithm Online processes one interval in O(log n) time.

8 Martin Olsen et al.

Algorithm Offline(I, h):
Step 1: Partition I into a minimum number c of chains.
Step 2: Split the chains into chains of cardinality h or less.
Step 3: Color the interval graph formed by the bottoms of

the chains using the classical greedy algorithm.
Step 4: Color any interval not at the bottom of a chain with the color of

the bottom of its chain.

Fig. 1: The offline version of our algorithm.

Fig. 2: The initial phase of Algorithm Offline is illustrated here. To the left,
we see the intervals forming the instance. The two chains created in step 1
are shown to the right (the endpoints of the intervals are different for the two
chains).

Fig. 3: This figure illustrates the final phase of Algorithm Offline for the case
h = 2. The four chains produced in step 2 are shown to the left, and the coloring
produced in steps 3 and 4 is shown to the right. The algorithm generates a
coloring using χ′h = 3 colors.

Proof Let π be a permutation of the integers from 1 to n such that xπ(i) < xπ(j)
for i < j. Now we consider the sequence where the i’th number is yπ(i). There is
a simple one-to-one correspondence between a decreasing subsequence of this
sequence and a chain of intervals from the set I: If we start at the bottom of a
chain and move upward, then the x-values increase and the y-values decrease.
This means that we obtain a partition of I into a minimum number of chains,
if we apply the Patience Sorting method described in Section 2.2 and partition
the sequence into a minimum number of decreasing subsequences.

Algorithm Online processes the intervals in increasing order of their start-
ing points applying the Patience Sorting method, and decisions on an interval
are made without considering intervals with bigger starting points. The same
goes for the splitting into smaller chains as well as the coloring of the chain bot-
toms and the other intervals. This means that Algorithm Online is an online
algorithm producing the same coloring as Algorithm Offline.

Each step of the Patience Sorting method requires O(log n) time if we use
binary search to locate the right pile. Keeping track of unused colors can also
be handled in O(log n) time for each step if a priority queue is used (a priority

An Asymptotically Optimal Algorithm for Online Stacking? 9

Algorithm Online(I, h):
Assumption on I = {[x1, y1], [x2, y2], . . . , [xn, yn]}: i < j ⇒ xi < xj
1: C ← ∅
2: D ← ∅
3: χ← 0
4: for i ∈ {1, 2, . . . , n} do
5: bottom← false
6: Let H be the set of chains in C where

the top of the chain contains Ii.
7: if H = ∅ then
8: Add a new chain to C consisting of Ii.
9: bottom← true
10: else
11: Let cJ be the chain in H with a top interval

J [xJ , yJ] with the smallest value of yJ .
12: Put Ii on top of cJ .
13: Let d be the color assigned to J .
14: if there are less than h intervals in cJ with color d then
15: Assign color d to Ii.
16: else
17: bottom← true
18: end if
19: end if
20:
21: if bottom = true then
22: Let G = {(d, y) ∈ D : y < xi}
23: if G = ∅ then
24: χ← χ+ 1
25: Assign color χ to Ii.
26: D ← D ∪ {(χ, yi)}
27: else
28: Pick any (d, y) ∈ G.
29: Assign color d to Ii.
30: D ← (D \ {(d, y)}) ∪ {(d, yi)}
31: end if
32: end if
33: end for

Fig. 4: The online version of our algorithm. Please note that we assume the
intervals in I to appear in increasing order of their starting points.

queue storing information on when the colors expire is used for the set D in
Fig. 4). ut

4 Probabilistic Analysis

Let ω′ be the clique number of the interval graph formed by the set of intervals
I. In this section, we conduct the probabilistic analysis on the competitive
ratio. First, however, in Lemma 2 and its associated corollary, we prove a non-
random bound on the competitive ratio in terms of c (the minimum number
of chains formed in step 1 of Algorithm Offline) and ω′.

10 Martin Olsen et al.

Fig. 5: One iteration of the for loop of Algorithm Online is illustrated here
(h = 2). To the left a new interval arrives (at the top with no endpoint
symbols). The setH consists of two chains. To the right we see the new interval
joining the chain with black circles as endpoints. The new interval receives the
same color as the interval below it in that chain.

Lemma 2 The coloring produced by Algorithm Offline and Online uses χ′h
colors satisfying

χ′h ≤
ω′

h
+ c . (4)

Proof For any real number x, we let gx denote the number of intervals in I
that contain x and let ghx denote the number of chain bottoms produced in
step 2 of Algorithm Offline containing x. As mentioned in Section 2.1, any
interval graph can be colored with a number of colors corresponding to the
size of the largest clique of the graph:

χ′h = max
x

ghx . (5)

Now consider an interval that is a bottom of a chain produced in step 2 of
Algorithm Offline but not a bottom of one of the chains produced in step 1. If
such an interval contains a number x, then the h− 1 intervals directly below
it in the chain will also contain x. There are at least ghx − c such intervals that
contain x so we obtain the following inequality:

(ghx − c)h ≤ gx . (6)

We now rearrange this inequality:

max
x

ghx ≤
maxx gx

h
+ c . (7)

Next, we use (5) and ω′ = maxx gx. ut

At some point in time there are ω′ items in our storage area implying χh ≥ ω′

h .
We now have the following corollary:

Corollary 3 The competitive ratio of Algorithm Online satisfies

1 ≤ χ′h
χh
≤ 1 + h

c

ω′
.

Going forward, we regard c and ω′ as random and our aim is then to show

that the competitive ratio
χ′
h

χh
of Algorithm Online is close to 1 with high

probability. Formally, we say that a sequence of events {En} occurs with high
probability, abbreviated whp, if P (En) → 1 for n → ∞. We will now show

An Asymptotically Optimal Algorithm for Online Stacking? 11

Fig. 6: The figure shows a decreasing subsequence for the sequence of b-values.
The squares and circles correspond to a-values and b-values, respectively. The
decreasing subsequence can be split into a grey chain and a black chain of
intervals.

that the competitive ratio is 1+O(hn−
1
2) whp. The strategy of our proof is to

show that c = O(
√
n) whp and that ω′ = Ω(n) whp, and then combine these

results.
For a brief moment, we leave the unknown distribution model and present

a lemma for a simpler model for generating the instances: the uniform model.
This model is obtained by substituting the unknown distribution in the un-
known distribution model (see Definition 1) with the uniform distribution on
[0, 1] × [0, 1]. This is the only place in the paper where we are not using the
unknown distribution model.

Lemma 3 For the uniform model, the set of intervals I can be partitioned
into c chains such that

c ≤ 6
√
n whp.

Proof Let (ai, bi) denote the i’th pair drawn using the uniform model. We
introduce a permutation π′ on the integers from 1 to n defined by aπ′(i) < aπ′(j)

for i < j. We now look at the sequence of b-values with bπ′(i) as the i’th number
in the sequence. We use the Patience Sorting method from Section 2.2 on the
b-sequence and obtain c′ decreasing subsequences. We split each subsequence
into two decreasing subsequences if there is a point where the b-values become
lower than their corresponding a-values. It is not hard to see that we can form
a chain of intervals for each of the up to 2c′ subsequences we obtain by the
splitting procedure (see Fig. 6). Since c ≤ 2c′, we have the following:

P (c > 6
√
n) ≤ P

(
c′ > 3

√
n
)
. (8)

The a- and b-values are independent for the uniform model, so c′ and Ln
have the same distribution, where Ln is the length of the longest increasing
subsequence for a permutation of n numbers chosen uniformly at random (see
Section 2.2):

P
(
c′ > 3

√
n
)

= P
(
Ln > 3

√
n
)
. (9)

We know from (3) that for n sufficiently large we have

P (Ln > 3
√
n) ≤ De−dn

1/5

12 Martin Olsen et al.

for constants D ∈ R and d > 0, and hence for n tending to infinity, we obtain

lim
n→∞

P (Ln > 3
√
n)→ 0,

and we see that combining (8) and (9) proves the lemma. ut

We now use this lemma for the uniform model to prove a similar lemma
for the more generic unknown distribution model.

Lemma 4 For the unknown distribution model, the set of intervals I can be
partitioned into c chains such that

c = O(
√
n) whp.

Proof Let B > 1 be such that f(a, b) ≤ B and let the function g : [0, 1] ×
[0, 1]→ R≥0 be defined as follows:

g(a, b) =
1− f(a, b)/B

1− 1/B
.

The function g clearly qualifies as a probability density function. Consider the
following procedure for sampling from [0, 1]2:

♠ Pick a pair (a, b) using f with probability 1/B or g with probability
1− 1/B.

If we let U and U be independent uniform distributions on [0, 1]2 and [0, 1],
respectively, then g is the density of U | {U > f(U)/B}, i.e. U condi-

tioned on the event A
def
= {U > f(U)/B}. Furthermore, since the density

of U | {U ≤ f(U)/B} is f and P (A) = 1 − 1/B, it follows from the
law of total probability, that the procedure ♠ will yield a uniform distribu-
tion on [0, 1]2. This fact can also be verified from direct calculation, since
1/B · f + (1− 1/B) · g = 1.
The proof proceeds by considering the minimum number of chains when pick-
ing n intervals using f and relating this quantity to the minimum number of
chains picking bBnc intervals using the ♠ procedure, so to distinguish between
the two, we let c ≡ cf,n denote the former number and let c̃ denote the latter.
Furthermore, we let Fn denote the number of intervals picked using the density
f when using the ♠ procedure.
For x ∈ R consider the probability that n intervals drawn using the density
f can be partitioned into more than x chains. The corresponding probability
can only increase if we pick bBnc intervals using the procedure ♠ when it is
given that n intervals have been drawn using the density f :

P (c > x) ≤ P (c̃ > x|Fn ≥ n) . (10)

Notice, that even though the intervals picked using the ♠ procedure are
marginally uniform, this is not the case when we condition on Fn, so Lemma 3
is not directly applicable to (10). However, we have

P (c̃ > x|Fn ≥ n) =
P (c̃ > x, Fn ≥ n)

P (Fn ≥ n)
≤ P (c̃ > x)

P (Fn ≥ n)
,

An Asymptotically Optimal Algorithm for Online Stacking? 13

where we notice, that c̃ in the numerator above is based on intervals selected
using the uniform model. Furthermore, since Fn has a binomial distribution:
Fn ∼ B(bBnc, 1/B) we have limn P (Fn ≥ n) = 1/2 by the Central Limit
Theorem, so that if let x = 6

√
bBnc and apply Lemma 3, we obtain

lim
n
P (c > x) ≤ lim

n
P (c̃ > x|Fn ≥ n) = 0

which gives the desired result. ut

As a side remark, it should be noted that the upper bound in Lemma 4
matches and extends the result for the uniform distribution (B = 1) from
Lemma 3.

To illustrate a case where the premises of Lemma 4 are not satisfied, we
can for instance consider a model where the departure time is fixed at 0.1 after
the arrival time which itself is uniform in [0, 0.9], or, in other words where

(x, y) | u ∼ (u, u+ 0.1) and u ∼ U(0, 1) .

It is easy to see that c = n with probability 1 in this case. Ironically, our algo-
rithm works perfectly when intervals are picked using this stochastic process.

Recall that ω′ is the clique number of the interval graph formed by the set of
intervals I.

Lemma 5 For the unknown distribution model, we have the following:

ω′ = Ω(n) whp.

Proof The triangle above the diagonal y = x in the square [0, 1] × [0, 1] can
be partitioned into squares S′z as illustrated in Fig. 7. Here, 0 < z < 1 is a
dyadic rational i.e. of the form z = k2−m for integers k and m. The triangle
below the diagonal can be partitioned in a similar way using squares Sz. We
now have the following:∫∫

[0,1]×[0,1]
f(a, b) da db =

∑
z

∫∫
Sz∪S′

z

f(a, b) da db = 1 . (11)

At least one of the summands on the rhs. of (11) must be strictly greater than
0, i.e. there exists z0 such that∫∫

Sz0
∪S′

z0

f(a, b) da db > 0 .

Let Kz0
def
= #{i : z0 ∈ Ii} be the number of intervals containing z0 and note

that
{ω′ ≥ k} ⊇ {Kz0 ≥ k}

and since it holds for all i and all z that

P (z ∈ Ii) ≥
∫∫

Sz∪S′
z

f(a, b) da db ,

it follows from the weak law of large numbers, that z0 will be contained in
Ω(n) intervals whp. ut

14 Martin Olsen et al.

a

b

1

1

z
Sz

S
0

z

Fig. 7: The square [0, 1] × [0, 1] (except the diagonal y = x) partitioned into
smaller squares S′z and Sz.

We now present a proof of the main theorem of the paper:

Proof (Theorem 1) Algorithm Online is an online algorithm using O(log n)
time per item according to Lemma 1. We can combine the results of Lemma

4 and Lemma 5 in the sense that if we define events An
def
= {c ≤ α

√
n} and

Bn = {ω′ ≥ βn} where α and β are the implied constants from the O-notation,
we have (using Boole’s inequality)

P

(
c

ω′
≤ α

β

1√
n

)
≥ 1− P (An)− P (Bn)

and letting n tend to infinity, we see that c/ω′ = O(1/
√
n) whp which together

with Corollary 3 concludes the proof. ut

Corollary 1 is an immediate consequence of Theorem 1 and to see Corollary

2 we note that it is not hard to prove that χ′h ≤ ω′, which implies
χ′
h

χh
≤ h

i.e. the competitive ratio is bounded, and, as such, uniformly integrable which
together with the convergence in probability from Corollary 1 yields the desired
result. (In fact, we obtain convergence of the m-th moment, for any m.)

An Asymptotically Optimal Algorithm for Online Stacking? 15

5 Experiments

We have performed some experiments to verify the theoretical results and to
examine the underlying constants for the big O notation. For the first type
of experiments, we have used the unknown distribution model introduced in
Definition 1 with a uniform distribution on {(a, b) ∈ [0, 1]× [0, 1] : |a− b| ≤ `}
for some number ` as the ”unknown” distribution. In other words, we are
choosing an interval with length up to ` uniformly at random. We use the
notation U(`) for this type of experiment.

For the second type of experiments, we go beyond the unknown distribu-
tion model and choose the center and the length of an interval independently
using two normal (Gaussian) distributions (if the length is negative, then we
ignore it and pick a new length). This means that any real number can be an
interval endpoint. The notation N(µc, σ

2
c , µl, σ

2
l) is used for the second type

of experiments, where µc and σc are the mean and the standard deviation for
the center of an interval, and µl and σl are the corresponding entities for the
length of an interval. We go beyond the unknown distribution model to look
into an even broader setting.

The eight distributions that we have used are U(`), ` ∈ {0.1, 0.3, 0.5, 0.8},
and N(µc, σ

2
c , µl, σ

2
l), (µc, σc, µl, σl) ∈ {(0, 1, 1, 0.2), (0, 1, 1, 0.4), (0, 5, 1, 0.2),

(0, 5, 1, 0.4)}.
The stack capacity has been fixed to h = 5 for all the experiments. The

experiments examine three perspectives corresponding to the three subsections
in this section. For every combination of the eight distributions and three
perspectives, we have generated 100 random instances: one instance for each
n in the set {2000, 4000, 6000, 8000, 10000, . . . , 200000}. Please note that no
instances have been reused.

5.1 Experiments for the Number of Chains

Lemma 4 is a key lemma specifying an upper bound on c, i.e., the minimum
number of chains that can be formed for an instance of the stacking problem.
The values of c/

√
n have been plotted against n in Fig. 8 for the two types of

distributions that we consider.
The experiments clearly verify Lemma 4 by showing that c/

√
n = O(1) –

even when we go beyond our unknown distribution model using the Gaussian
distributions. The underlying constant k seems to be moderate (not bigger
than 15 for our distributions), and c/

√
n ≤ k holds for all the instances with

k depending on the actual distribution.

5.2 Convergence Rate Experiments

We now take a closer experimental look at our main contribution: Theorem 1.
Our purpose is to verify the theorem and examine the actual convergence rate

16 Martin Olsen et al.

0 25000 50000 75000 100000 125000 150000 175000 200000
n

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

c/
sq

rt(
n) U(0.1)

U(0.3)
U(0.5)
U(0.8)

0 25000 50000 75000 100000 125000 150000 175000 200000
n

4

6

8

10

12

c/
sq

rt(
n)

N(0, 1^2, 1, 0.2^2)
N(0, 1^2, 1, 0.4^2)
N(0, 5^2, 1, 0.2^2)
N(0, 5^2, 1, 0.4^2)

Fig. 8: The values of c/
√
n plotted against n for the Uniform (left) and Gaus-

sian type of distributions (right).

0 25000 50000 75000 100000 125000 150000 175000 200000
n

10

15

20

25

30

35

(C
om

pe
tit

iv
e

ra
tio

 u
. b

.-1
) s

qr
t(n

)

U(0.1)
U(0.3)
U(0.5)
U(0.8)

0 25000 50000 75000 100000 125000 150000 175000 200000
n

10

15

20

25

30

(C
om

pe
tit

iv
e

ra
tio

 u
. b

.-1
) s

qr
t(n

)

N(0, 1^2, 1, 0.2^2)
N(0, 1^2, 1, 0.4^2)
N(0, 5^2, 1, 0.2^2)
N(0, 5^2, 1, 0.4^2)

Fig. 9: The graph shows the results of the experiments for the expression(
χ′
h

(ω′/h) − 1
)√

n for the Uniform (left) and Gaussian type of distributions

(right).

for the eight distributions that we consider. Directly inspired by our theorem,

we have plotted
(

χ′
h

(ω′/h) − 1
)√

n against n in Fig. 9. We remind the reader

that χh ≥ ω′

h so
χ′
h

(ω′/h) is an upper bound on the competitive ratio that we

can efficiently compute (as mentioned earlier, we have no efficient procedure
for computing χh for h = 5 at the moment).

Similar to the experiments with the number of chains c, we conclude that(
χ′
h

(ω′/h) − 1
)√

n = O(1) with an underlying moderate constant k. The maxi-

mum k-values observed for our distributions were around 30. From the graphs,

we can see that
χ′
h

(ω′/h) ≤ 1 + k/
√
n is satisfied for all our instances.

5.3 Competitive Ratio Experiments

For the sake of completeness, we ran some experiments and plotted the upper

bound for the competitive ratio,
χ′
h

(ω′/h) , against n. The results are shown in

Fig. 10.

An Asymptotically Optimal Algorithm for Online Stacking? 17

0 25000 50000 75000 100000 125000 150000 175000 200000
n

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Co
m

pe
tit

iv
e

ra
tio

 u
pp

er
 b

ou
nd

U(0.1)
U(0.3)
U(0.5)
U(0.8)

0 25000 50000 75000 100000 125000 150000 175000 200000
n

1.0

1.1

1.2

1.3

1.4

1.5

Co
m

pe
tit

iv
e

ra
tio

 u
pp

er
 b

ou
nd

N(0, 1^2, 1, 0.2^2)
N(0, 1^2, 1, 0.4^2)
N(0, 5^2, 1, 0.2^2)
N(0, 5^2, 1, 0.4^2)

Fig. 10: An upper bound for the competitive ratio plotted against n for the
Uniform (left) and Gaussian type of distributions (right).

These graphs confirm that the competitive ratio converges to 1 in proba-
bility. The competitive ratio is relatively close to 1 even for instances with not
that many items. As an example, the competitive ratio is not bigger than 1.2
for instances with 25000 items for the distributions that we have considered.

6 Conclusion

We have presented a simple polynomial time online algorithm for stacking
with a competitive ratio that converges to 1 in probability under the unknown
distribution model.

The main message of our paper is that such an algorithm exists. The exper-
imental part of our paper shows that the results also have practical relevance.
We strongly believe that there are other asymptotically optimal algorithms for
online stacking. For future research, we propose to formally analyze similar al-
gorithms to check if they are asymptotically optimal. It is also important to
compare the convergence rates for the competitive ratios for different asymp-
totically optimal algorithms if more than one algorithm exists.

Acknowledgements

The authors thank the anonymous reviewers for their valuable comments and
suggestions.

References

1. Aldous, D., Diaconis, P.: Longest increasing subsequences: From patience sorting to the
baik-deift-johansson theorem. Bull. Amer. Math. Soc 36, 413–432 (1999)

2. Avriel, M., Penn, M., Shpirer, N.: Container ship stowage problem: complexity and
connection to the coloring of circle graphs. Discrete Applied Mathematics 103(1-3),
271 – 279 (2000)

18 Martin Olsen et al.

3. Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest
increasing subsequence of random permutations. Journal of the American Mathematical
Society 12(4), 1119–1178 (1999). URL http://www.jstor.org/stable/2646100

4. Borgman, B., van Asperen, E., Dekker, R.: Online rules for container stacking. OR
Spectrum 32(3), 687–716 (2010)

5. Cornelsen, S., Stefano, G.D.: Track assignment. Journal of Discrete Algorithms 5(2),
250 – 261 (2007)

6. Demange, M., Olsen, M.: A note on online colouring problems in overlap graphs and
their complements. In: WALCOM 2018, Lecture Notes in Computer Science, vol. 10755,
pp. 144–155. Springer (2018)

7. Demange, M., Stefano, G.D., Leroy-Beaulieu, B.: On the online track assignment prob-
lem. Discrete Applied Mathematics 160(7-8), 1072–1093 (2012)

8. Duinkerken, M.B., Evers, J.J.M., Ottjes, J.A.: A simulation model for integrating quay
transport and stacking policies on automated container terminals. In: Proceedings of
the 15th European Simulation Multiconference (ESM2001) (2001)

9. Hamdi, S.E., Mabrouk, A., Bourdeaud’Huy, T.: A heuristic for the container stacking
problem in automated maritime ports. IFAC Proceedings Volumes 45(6), 357 – 363
(2012)

10. Jansen, K.: The mutual exclusion scheduling problem for permutation and comparability
graphs. Information and Computation 180(2), 71 – 81 (2003)

11. König, F.G., Lübbecke, M.E., Möhring, R.H., Schäfer, G., Spenke, I.: Solutions to real-
world instances of pspace-complete stacking. In: Algorithms - ESA 2007: 15th Annual
European Symposium, Lecture Notes in Computer Science, vol. 4698, pp. 729–740.
Springer (2007)

12. Olsen, M.: Online stacking using RL with positional and tactical features. In: Learning
and Intelligent Optimization - 14th International Conference, LION 14, Lecture Notes
in Computer Science, vol. 12096, pp. 184–194. Springer (2020)

13. Olsen, M., Gross, A.: Probabilistic analysis of online stacking algorithms. In: Computa-
tional Logistics - 6th International Conference, ICCL 2015, Lecture Notes in Computer
Science, vol. 9335, pp. 358–369. Springer (2015)

14. Pacino, D., Jensen, R.: Fast generation of container vessel stowage plans: using mixed
integer programming for optimal master planning and constraint based local search for
slot planning. Ph.D. thesis, IT University of Copenhagen (2012)

15. Pilpel, S.: Descending subsequences of random permutations. Journal of Combinatorial
Theory, Series A 53(1), 96 – 116 (1990)

16. Rei, R.J., Pedroso, J.P.: Tree search for the stacking problem. Annals OR 203(1),
371–388 (2013)

17. Tierney, K., Pacino, D., Jensen, R.M.: On the complexity of container stowage planning
problems. Discrete Applied Mathematics 169(0), 225 – 230 (2014)

18. Wang, N., Zhang, Z., Lim, A.: The stowage stack minimization problem with zero
rehandle constraint. In: IEA/AIE (2), Lecture Notes in Computer Science, vol. 8482,
pp. 456–465. Springer (2014)

	An asymptotically optimal algorithm for online stacking.CS
	An Asymptotically Optimal Algorithm for Online.AM

