SPATIO-TEMPORAL STRUCTURAL EQUATION MODEL Ecology of wet heathlands

AARHUS UNIVERSITY

Christian Damgaard, Aarhus University, Department of Bioscience

Erica tetralix is decreasing on Danish wet heathlands

- Characteristic species of wet heathlands
- · What is the cause?
- What management actions may reverse the trend?

Wet heathland vegetation data

The cover of the three dominating species on wet heathlands, *Erica tetralix*, *Calluna vulgaris* and *Molinia caerulea*, as well as all other higher plant species was determined by the pin-point method.

Time series data (2007–2014) from 39 sites with a total of 1322 plots.

Pin-point cover data allows the aggregation of species.

Spatial and temporal model (SEM)

Joint distribution of cover data

The Dirichlet-multinomial distribution models pin-point cover data of n species – accounts for spatial aggregation.

 y_i : pin-point hits of species i; $\sum_{i=1}^{n} y_i \ge \#$ of grid points

 p_i : relative cover of species i; $\sum_n p_i = 1$

$$Y \sim Mn \left(\sum_{n} y_{l}, (p_{1}, \dots, p_{n-1}, 1 - p_{l} - \dots - p_{n-l}) \right)$$

$$\Lambda(p_{1},...,p_{n-1}) \sim Dir\left(\frac{q_{1}-q_{1}\delta}{\delta},...,\frac{q_{n-1}-q_{n-1}\delta}{\delta},\frac{1-\delta}{\delta}-\frac{q_{1}-q_{1}\delta}{\delta}-...-\frac{q_{n-1}-q_{n-1}\delta}{\delta}\right)$$

$$E(p_1,...,p_{n-1}) = (q_1,...,q_{n-1})$$

 δ : intra-plot correlation due to spatial aggregation.

Spatial process (2007)

- Large uncertainty
- Regional geographic variation (50 km scale)
- South Jutland behave qualitatively different (yellow)
- Information may be used to generate new hypotheses

Temporal process (2007–2014)

Good fit!

Dwarf shrubs (*Erica* and *Calluna*) have same qualitative response, and opposite to *Molinia* and other plants.

Positive effects of nitrogen deposition, pH, sandy soils, and low precipitation on dwarf shrubs. Negative effect of grazing on *Erica*.

Application: local prediction

- Collect data from 20 to 40 plots
- Only temporal process is relevant (good model fit)
- Prediction of the effect of local management actions
- Set-up of an adaptive management plan

Conclusions

- Important to take local spatial aggregation of plant abundance into account
- Important to separate measurement errors from structural uncertainty when making predictions
- Ecological processes are best studied using time-series data

