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Abstract

We present a spatio-temporal modelling framework for stochastic fields that
obey exact symmetry in space and time, i.e. the field amplitude considered
as a stochastic process in time at a fixed position in space is identical, as a
stochastic process, to the field amplitude considered as a stochastic process
in space at a fixed time point. The stochastic fields are given in explicit form
and include intermittency as a basic ingredient. A causal version is discussed
with respect to turbulence modelling and in relation to Taylor’s Frozen Flow
Hypothesis.

Taylor’s Frozen Field Hypothesis (TFFH) [14] originates from turbulence studies
and was formulated as a relation between second order moments of spatial and
temporal velocity increments in homogeneous and stationary turbulent flows. The
basic assumption is that of the existence of a steady mean flow V that is much
larger than fluctuating contributions. The Hypothesis then states that second order
moments of timewise velocity increments on a time scale t correspond to second order
moments of spatial increments on a spatial scale V t (in direction of the mean flow)
and vice versa. The application of TFFH is a standard tool in turbulence studies
where it is used to interpret timeseries as spatial recordings, and, in many cases,
without restriction to second order statistics. In particular, TFFH is widely used to
estimate spatial structure functions from hot-wire anemometry, see e.g. [8].

The basic idea of converting spatial scales to temporal scales has also been ap-
plied to a great variety of other phenomena in natural sciences ranging from rain
field measurements and modelling [10] to the interpretation of galactic turbulence [5].
The basic criterion for the applicability of TFFH is the existence of a steady advec-
tion velocity that carries the observable of interest through spatial scales without
relevant distortion. There are however situations where the converting quantity be-
tween space and time is not the mean velocity (although present) [15] and there
are observations in atmospheric sciences where TFFH holds but no clear advection
velocity V can be identified and/or the fluctuations are not small compared to V [9].
This raises the question whether space-time similarity in the spirit of Taylor can be
caused by other mechanism than a steady mean flow, as was pointed out in [6].

In this letter we discuss a class of stochastic fields that show space-time symmetry
without referring to a constant advection velocity. The spatio-temporal stochastic
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modelling framework we present is explicit (not defined in terms of solutions of
stochastic differential equations and not defined implicitely as, for instance, in [6]),
displays intermittency and is intrinsically symmetric, as a stochastic field, with re-
spect to space-time conversion. Moreover, the modelling framework is mathemati-
cally tractable and can be formulated to obey causality which provides the possibility
to specify the ingredients of the model for a wide range of applications.

We define the modelling framework for the spatio-temporal field amplitude Yt(x)
in the simplest case as

Yt(x) = µ+

∫

R2

G(t− s, x− ξ)σs(ξ)W (ds, dξ) (1)

where t denotes time, x denotes position in one-dimensional space, µ is the mean
amplitude µ = E{Yt(x)} (E{ } denotes the expectation), G is a deterministic kernel
(suitable for the integral to exist) and W is two-dimensional white noise, i.e. an
independently scattered normal random measure. The stochastic field σ is assumed
to be independent of W , stationary in time and homogeneous in its spatial variable
which implies stationarity and homogeneity for Y . The field σ allows the distribution
of Y and that of of its increments to be strongly non-Gaussian with intermittent
amplitudes, as has been discussed in [2, 3]

In the following we specify the model ingredients G and σ such that Y behaves
for fixed t as a process in x stochastically identical to Y for a fixed x as a process
of t, i.e Yt(0) is stochastically identical (as a stochastic process) to Y0(ct), where c is
a constant. Without loss of generality we will assume that c = 1 (any other choice
corresponds to a linear change of time).

The symmetry between space and time can easily be achieved by assuming a
symmetric kernel

G(t, x) = G(x, t) (2)

and by the requirement that σt(0) and σ0(ct) are stochastically identical processes.
While the former requirement is simply a restriction of the class of deterministic
kernels to functions symmetric in their arguments, the latter is discussed below in
more details.

In the turbulence context the model (1) (with some extra term accounting for
skewness) represents the main component of the velocity field and σ2 plays the role
of the turbulent energy dissipation [2, 3, 4]. To account for intermittency and scaling,
a stochastic intermittency field for σ is employed in [1, 13, 11, 12, 7]. This stochastic
intermittency field can, for instance, be realized as a continuous cascade process in
space and time.

To give an explicit example of a stochastic field σ with spatio-temporal symmetry
we adopt the set-up of stochastic intermittency fields and define

σt(x) = exp{L(At(x))} (3)

where At(x) = (x, t) + A0 is a translational invariant region in space-time attached
to each point (x, t) and where L is a homogeneous Lévy basis [1], i.e. an indepen-
dently scattered infinitely divisible random measure with distributions independent
of position in space-time. Such a Lévy basis associates a random number to each
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Figure 1: Illustration of the set A0 symmetric around the identity line x = t.

set in R2 and the dependence structure of σ at different space-time locations only
depends on L of the overlap of the associated sets A. Such a set-up easily accounts
for scaling relations corresponding to a geometrical property of A0 [13, 11, 12, 7].

We now specify the set A0 to be symmetric with respect to the identity line x = t
(see Figure 1) which implies that

A0(0) ∩ A0(x) = A0(0) ∩ At(0) (4)

for all x = t and consequently the processes σt(0) and σ0(x) are stochastically
identical implying that Yt(0) and Y0(t) are also stochastically identical.

It is important to note that no requirement about µ = E{Yt(x)} enters the
model, in fact µ can be any value including zero. Another important point is that
no assumptions about the fluctuations being small compared to the mean amplitude
are used.

Causality, in the sense that present field amplitudes only depend on past innova-
tions, can easily be incorporated by the requirement G(t, x) = 0 for t ≤ 0 (implying
that G(t, x) = 0 for x ≤ 0) and At(x) ⊂ [−∞, t]× R.

In case that σ is an arbitrary stationary and homogeneous stochastic field with
ε = E{σt(x)2} finite, we arrive at the original statement of TFFH, namely that
second order moments of spatial increments are equal to second order moments of
temporal increments. To see this we note that the spatial second order moments can
be expressed as

E{(Y0(x)− Y0(0))2} = ε

∫

R2

(G(−s, x− ξ)−G(−s,−ξ))2dsdξ (5)

and the temporal second order moments as

E{(Yt(0)− Y0(0))2} = ε

∫

R2

(G(t− s,−ξ)−G(−s,−ξ))2dsdξ. (6)

These two expressions give the same results if we assume (2) and set x = t.
The above modelling framework can straightforwardly be extended to k spatial

dimensions
Yt(x) = µ+

∫

Rk+1

G(t− s, x− ξ)σs(ξ)W (ds, dξ) (7)
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where W is white noise in k+ 1 dimensions. We define the intermittency field in the
same way as above (3) where now A is a subset of Rk+1. Let x = (x1, x2, . . . , xk)
denote a vector in Rk and let x̄ = (0, x2, . . . , xk). We specify the set A0 to be
symmetric with respect to the identity plane x1 = t which implies that

A0(x) ∩ A0(x̄) = A0(x̄) ∩ At(x̄) (8)

for all x1 = t and consequently the processes σ0(x) and σt(x̄) are stochastically
identical. The assumption

G(t, x1, x2, . . . , xk) = G(x1, t, x2, . . . , xn) (9)

then implys that Yt(x̄) and Y0(x) are also stochastically identical. We therefore have
that Yt(x) as a process in time t at fixed x is stochastically identical, as a process,
to Yt(x)) considered as a process of x1 for fixed t and fixed x̄.
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