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Figure 14: Activity recognition performance across all devices using leave-one-user-out and leave-one-model-out cross validations. (¥*),(*), for
the following significance levels p <0 01, p <0 05 comparing interpolated with 25 Hz sampling frequency and non-interpolated data.
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Figure 15: Activity recognition performance using Intra-cluster-leave-one-device-out evaluating learners trained with clusters of similar devices.
(*%),(*), for the following significance levels p <0 01, p<0 05 comparing interpolated with 25 Hz sampling frequency and non-interpolated data.

For comparison, Figure 14(a) evaluates the same interpolation options
as shown in Figure 14(b) but for the leave-one-user-out evaluation mode.
Here, since training has seen the devices used in testing, unlike in Figure
14(b), interpolation has lost most of its positive effects, even when ap-
plied for frequency features. Note that the interpolation methods nearest
(resp. smoothed cubic splines) are not shown in the figure, but perform
very similar to linear (resp. cubic spline) interpolation.

5.3 Combining Interpolation and Clustering

We have also studied the impact of interpolating when combined with
clustering devices with similar heterogeneities. These results are re-
ported in Figure 15, and—similar to Figure 14(a)—only in a few in-
stances the interpolation actually improves the HAR performance, e.g.,
for frequency features in SVM, K-NN and random forest (p <0 001).
This poor performance is likely due to that the clusters take into ac-
count the sampling frequencies and respective instabilities, and thus
devices with similar frequencies and instabilities are in the same cluster
and the potential benefits from employing sample rate conversion via
interpolation is lowered.

Overall, the results in Figure 14 and 15 indicate that interpolation, and
specifically down-sampling, is most useful in case of heterogeneous
sampling frequencies w.r.t. training vs. test data. Furthermore, re-
sults indicate that interpolation can mitigate the impairments caused by
differing sampling frequencies, but not the issues of sampling instabil-
ities. Further evidence of the latter is given by running training with
multi-tasking impaired devices, c.f. Section 3: Here, the effects of in-
terpolation on performance are not better (and largely even worse) then
when training with non-impaired devices, indicating that instabilities are
not mitigated by interpolation.

Summary of results: The evaluations in this section provide evidence
that training classifiers specifically for clusters of devices with similar
characteristics increases HAR performance cost-effectively. Further-
more, interpolation, specifically down-sampling, can improve HAR
performance—specifically when frequency features are used, and when
training and test devices differ in sampling frequency. If the latter is
already mitigated, e.g., by a clustering based approach, interpolation is

only recommendable for pre-processing for frequency-domain features,
but should rather not be employed for time-domain or ECDF features.

6. DISCUSSION

In this section we discuss the generalizability of the presented results
across new and next-generation classes of devices, as well as further
motion and other sensors in place of or additional to accelerometer and
gyroscope. Finally, we also discuss assumptions and limitations of the
evaluation presented here.

Device Types and Evolution

A natural question to ask is whether the various heterogeneities across
devices diminish as the user device technology evolves. Indeed, the
results presented here seem to indicate a trend: Newer and more expen-
sive models are likely to yield lower biases; in regards to sensor biases,
this trend may though also be caused by the longer wear and tear that
the tested instances of older model were exposed to compared to devices
of newer models.

An initial intuition of ours that was clearly not backed by the results was
that smartwatches, being of smaller form factor and with more limited
resources than smartphones, would exhibit far larger sensor biases and
sampling instabilities, especially under high CPU load. On the other
hand, smaller devices are expected to be more single-purpose-build and
less required to fulfill a wide range of tasks. Thus, less multitasking
impairments may be expected in real-world use. While biases and insta-
bilities were not stronger, in the actual activity recognition performance
smartwatches though showed lower performance than the selected smart-
phones, c.f. Figure 5 and 7. The results are not conclusive though, in
regards to whether that may be attributed to harmful heterogeneities or
rather to the difference in learning settings, as the on-body placement
is vastly different from the task to learn from the smartphones’ data,
which were residing in a hip-mounted pouch.

A natural extension of the study is to extend the type of investigated
user devices further, beyond tablets, smartphones and -watches and to
other, popular or emerging mobile devices, specifically wearables, such
as smart earphones and wristbands. Such investigation may be fruitful,



as our results on the hypothesis that smaller, less powerful devices suffer
more from heterogeneity or its impacts on HAR performance were
inconclusive when comparing smartphones with -watches, see above.
A similar extension is to obtain and compare with more results from de-
vices running other OS. While we provide some results for iOS devices,
the automatic-sleep phenomena, c.f. Section 3, hindered a fair compar-
ison with other devices in the HAR evaluations. We undertook a prelim-
inary investigation, collecting data from Android but also some iPhones
of some 50 CS students in a setup as described in Section 3. The results
showed that the frequency irregularities are of similar magnitude than
for the average over the investigated Android phones.. Similarly, also
the quality of and biases within the acceleration measurement sets them-
selves were comparable to those stated in Section 3, with deviation from
1G of up to a +2.5%, and an average standard deviation of 0.039G.

Feature types

In this paper we have shown that the performance of three feature types,
i.e., time-domain, frequency-domain and ECDF features, have greatly
varying performances in HAR in the presence of sensor heterogeneities.
Furthermore, the frequency features, without preprocessing, have been
shown to be most vulnerable in heterogeneous settings. Thus, based
on this case study, especially ECDF but also time features are strongly
recommended for HAR when sensor heterogeneities are present.
However, other domains of HAR uses domain specific knowledge to
look for specific frequencies, e.g., for detecting freezing of gait in pa-
tients with Parkinson’s disease [34]. Thus, interchanging features might
not be an applicable strategy in all use cases, as it was in our case study.
For these instances, based on our case study we have shown that prepro-
cessing the signal with simple interpolation methods will significantly
increase the performance, when sensor heterogeneities are present.

Sensor Types

Another extension of the study presented here is to consider popular in-
device sensor types other than the accelerometer and gyroscope. Regard-
ing issues with heterogeneities of sampling frequencies across devices,
and regarding irregularities of sampling frequency, a natural expectation
is that it will affect sampling from other in-device sensors equally as the
thoroughly investigated accelerometer sensor. Our results for investigat-
ing the gyroscope support this hypothesis. On the other hand, we expect
these impairments to be less severe on HAR for sensors which sample
at significantly lower frequency or for which high-frequency sampling
and sampling stability is less crucial, e.g. for location sensors or for the
magnetometer when used to obtain mere device orientation.
Furthermore, our evaluation of sensor biases focused largely on static
setups. Regarding varying and mediocre quality of sensing, other sen-
sor types have varying characteristics. Additionally, for some sensors,
such as the magnetometer or GNSS-based location sensors, the het-
erogeneities induced by the user’s current environment are much more
severe: While the accelerometer is biased only to a small extent, specif-
ically by the ambient temperature, a magnetometer is heavily biased by
magnetic inference as induced by, e.g., building elements and installa-
tions, or motor vehicles.  Furthermore, for many sensors, biases such
as gain and offset are typically temperature dependent [26], and, e.g.,
during the stress test of the phones, c.f. Section 3 the temperatures were
noticeable hotter, and the authors are unaware whether the phones have
built-in control of temperature dependent calibration. Thus, during the
stress test the phones’ biases and offsets may have changed due to the
higher temperature.

Combined Mitigating of Further Heterogeneities

Beyond the device-centric heterogeneities focused on in this paper, see
Section 1, further heterogeneity types are present in most real-world
HAR scenarios [2, 13], prominent among which are device orientation

and on-body placement. Several of the mitigation techniques for the
latter, see Section 2, follow a divide&conquer approach via training
classifiers for similar configurations (e.g., w.r.t. placement and orienta-
tion) as does our clustering technique (applied for device characteristics).
The same concept can be applied to both these dimensions (and to even
more) simultaneously—whereas the number of classifiers to be trained
then grows exponentially with the dimensions, i.e. heterogeneity types,
considered. Also the estimation (and the thereby facilitated *subtraction’)
of the gravity vector from acceleration data could be combined with the
mitigation techniques described herein, as a pre-processing step.

7. CONCLUSIONS

In this paper, we have presented and analyzed heterogeneities present in
the motion sensor output of common smartphones, -watches and tablets.
We furthermore analyzed the impairments these heterogeneities cause
for human activity recognition tasks. To this end, we presented results
from several experiments investigating datasets, which are made public,
involving in total 36 devices.

The investigation presented identifies and analyses the following three
sensor heterogeneity categories, focusing on accelerometer and gyro-
scope sensors: Firstly sensor biases, which for some investigated devices
showed in stillness deviation of 8% deviation from the sole exerted force,
gravity—a bias large enough to account for the acceleration of a fast
train. Secondly, severe sampling instabilities occur on many investi-
gated devices, especially when these are running other tasks, which
yield high loads. Finally, also the heterogeneous nominal sampling rates
of different devices yield a big challenge for activity recognition on
device models not yet seen in the training phase. Furthermore, we have
investigated, using a case study, the impairments these heterogeneities
yield for human activity recognition, as well as several techniques for
mitigating these. As mitigation techniques in the form of preprocessing
methods we investigated various interpolation schemes and low-pass
filtering, as well as the clustering of devices according to their hetero-
geneity characteristics—which then allows to train classifiers targeted at
individual device clusters. Additionally, we evaluate both impairments
and mitigation effects for different feature types, namely time domain,
frequency domain and ECDF features, and four learner types, namely
C4.5 trees, SVMs, k-NN learners, and random forests. The impairments
in the case study were significant, lowering the recognition accuracy in
our case study by up to a third for some choices of feature and learner
types, most notably for frequency-domain features. The mitigation
techniques were shown to regain much of these heterogeneity-caused
accuracy losses. Finally, we have discussed implications and potential
extensions of the presented work.
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