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Fig. 13. Boxplot of the median and 25th/75th percentiles of the “blurriness” of edges measured by the sigmoid fit of Fig. 8 corresponding to the clinical
reconstruction in Fig. 12. Higher values indicate flat, blurry edges. The measure approaches 0 as the edge becomes steeper. For each of 10 temporal phases
the edge slope is depicted for TV (red), PICCS (green), and OF (blue).

utilize image registration to reconstruct every temporal phase
from the full set of projections, hereby avoiding significant
undersampling in the reconstruction. In the present work we
acquired all data from a single flat panel rotation and based our
studies hereon. Clinical practice varies however and others are
likely to have different preferences, e.g. acquiring less/more
data – possibly from several panel revolutions. Certainly, the
more projections that are acquired, and the more projections
can be assigned to different temporal bins, the higher our
expectations of the resulting image quality should be. We
believe that the results presented provide a useful overview
of the image quality to be expected from registration-based
reconstructions under typical clinical constraints.

Conventional reconstruction techniques such as the g-FDK
fail for 4D CBCT as they are unable to handle the un-
dersampling resulting from temporal binning. State-of-the-art
reconstruction algorithms such as TV and PICCS address
this problem using compressed sensing. They each have their
strong and weak sides. The downside of total variation regular-
ization is that it tends to produce unnaturally patchy (piecewise
constant) images and that it can remove fine structures such as
the spinous processes as demonstrated in Fig. 6. For PICCS
stationary structures remain visible due to the inclusion of a
fully sampled temporal average. This comes at the price of
some temporal blurring however. TV on the other hand does
not suffer from temporal blurring. Both the qualitative and
quantitative studies in this paper suggest that reconstruction
based on optical flow inter-phase registration offer the better
overall compromise: OF is competitive with TV and clearly
beats PICCS in the depiction of moving structures (qualita-
tively shown in Fig. 4, Fig. 5, and Fig. 12 and quantitatively
verified in Fig. 7 and Fig. 9). On the other hand, both PICCS
and OF outperform TV for thin stationary structures such as
the spinous processes in Fig. 6.

Looking at the close-ups of the XCAT reconstructions of
the tumor and sternum in Fig. 4 and Fig. 5 respectively,
we can estimate the influence of intra-phase motion on the
reconstruction quality. Evidently the temporal phases under-
going the most motion (mid-inspiration and mid-expiration)
appear somewhat more blurred as the remaining reconstruc-

tions. This trend is particularly true for the TV and PICCS
reconstructions. The observation is backed up quantitatively
in the boxplot in Fig. 9, in which the median values cor-
responding to the OF reconstructions show less inter-phase
variation compared to TV and PICCS. The picture is less
clear for the reconstruction of the patient dataset (Fig. 12)
and corresponding boxplot (Fig. 13). This is most likely an
indication of inconsistent binning of the raw projection data.

The differences between the various reconstructions were
more prominent on the numerical phantom when compared
to the clinical dataset. Numerous factors are at play. Firstly,
an optimal temporal binning could be performed for the
numerical phantom. The binning for the clinical dataset on
the other hand is only valid under the assumption of a fully
regular breathing pattern and is unlikely fully satisfied in
practice. Secondly, the slight angle dependent misalignment
of the clinical imager was only corrected with an approximate
sinusoidal calibration [41], which may have caused a slight
loss of resolution. Finally, we did not perform any scatter
correction on the clinical data. While the two latter points
may be improved upon in obvious extensions of our current
implementation, the first point remains a serious issue for all
reconstructions that rely on temporal binning.

The OF reconstruction process involves multiple steps.
This is a potential disadvantage. Moreover, it requires a
successful registration to be feasible. The optical flow solver
we utilize (detailed in [33]) is unable to correctly register
4D g-FDK images due to the present aliasing. This led us
to describe a number of intermediate steps producing an
approximate TV reconstruction suitable for OF estimation. It
was outside the scope of this paper to explore and validate
the registration quality obtainable from different intermediate
image reconstruction and registration algorithms – and to
relate potential registration imprecisions to the quality of the
final OF reconstruction outcome. We did however notice a
slightly better image quality in the final OF reconstructions
(particularly for blood vessels in the lung) if the registration
was based on the TV reconstructions presented in Fig. 3
and Fig. 11 instead of the reduced quality intermediate TV
images utilized in the present work. We have chosen however
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to disclose the reconstructions with the shorter reconstruction
time and thus currently the most likely candidate to be useful
in clinical practice. We could however also view our approach
as a “post-processing step” to any existing 4D reconstruction
method; Take as input the 4D reconstruction, perform inter-
phase registration, and utilize the obtained reconstruction to
perform a fully sampled final reconstruction. If the registration
is valid, the final 4D reconstruction suppresses undersampling
artifacts assuming that sufficient data for a conventional 3D
reconstruction was obtained.

A good measure of the expected runtime is the number of
multiplications with E and ET respectively that is performed
by the solvers. For PICCS and TV we ran 300 Split-Bregman
iterations each containing 8 conjugate gradient iterations. Each
conjugate gradient iteration contains two operations involving
multiplication with E or ET . This is supplemented by two
additional operations for every Split-Bregman iteration. In total
2∗(2400+300) = 5400 applications of the system matrix was
computed during the reconstruction of the presented TV and
PICCS reconstructions. For the intermediate TV reconstruc-
tions intended for image registration on the other hand, we
ran 100 iterations Split-Bregman iterations containing a single
conjugate gradient iteration each (on a reduced resolution
projection plate). This constitutes “merely” 400 system matrix
multiplications. The subsequent OF reconstruction performed
50 iterations of a gradient projection solver for each of 10
temporal phases. This involved 1000 system matrix multipli-
cations. That is, nearly four times as much work went into the
presented TV/PICCS reconstructions compared to the work
put into the OF reconstructions. With the present implemen-
tation and hardware as stated in section II-G the approximate
reconstruction times of a full OF reconstruction, approximately
speaking, constitute 6 hours. Many performance optimizations
are however pending and we believe reconstruction times can
be reduced noticeable, e.g. by adopting an optimized encoding
operator implementation [42]. Naturally, the runtime cost is
also defined by the chosen spatial and temporal resolution.

Apart from the initial low-resolution reconstruction we
reconstructed at an isotropic resolution of 1.753 mm3/voxel
at 10 temporal phases. This was a compromise made from
several considerations: There is no fundamental hindrance to
reconstructing at a higher resolution. This would however
induce increased signal undersampling and resultant aliasing.
Moreover, in our current model it is a requirement that the
spatial field of view fully encompasses any voxel intersected
from the X-ray source to any detector pixel at any angulation.
Thus, as we increase the spatial resolution, memory as well as
as computational requirements increase for both the encoding
and regularization operators.

An increase in temporal resolution could be made without
incurring an extra computational cost to the encoding operator.
More registrations would be needed however (scaling quadrati-
cally to the number of temporal phases). Since there is a strong
correlation between consecutive projections, which typically
get binned in series of 3-4 projections, the price in term of
aliasing of increasing the temporal resolution may not be very
significant. It was considered out of scope in the present work
to perform this exploration however.

The low spatial resolution of the training data reconstruc-
tion for the principal component analysis was chosen such
that, approximately, each bin would be fully sampled and
thus exhibit limited temporal aliasing. The PCA on the low-
resolution reconstruction was utilized both for the numerical
phantom and the clinical datasets to achieve a set of patient-
specific PCA basis functions. These were subsequently used
as a means of achieving faster convergence of the Split-
Bregman solver by regularization. As the reconstruction of
the low-resolution volume is fast and the PCA computation
time negligible, the PCA-based regularization term offers a
significant overall reduction in computation time.

The long reconstruction times for 4D CBCT using TV,
PICCS or OF is a practical hurdle for clinical applications
in which online reconstruction is required. For a number of
scenarios however, reconstruction times in the order of a few
hours would be acceptable. Radiotherapy treatment planning
and evaluation in which a patient is treated daily over a month
long course is one such example. 4D CBCT images could be
prepared from one day to the next. In fact, the underlying
optical flow field in itself could have its applications in e.g.
tumor tracking and dose accumulation.

APPENDIX A
SPLIT-BREGMAN AND CONJUGATE GRADIENT

ALGORITHMS

This appendix provides implementation details on the con-
strained Split-Bregman solver. It was used to minimize the
l1-regularized optimization problems (3) and (7), i.e. com-
puting the low-resolution training data and the intermediate
reconstruction. It was also used to obtain the reference recon-
structions for TV and PICCS.

Pseudo-code for the algorithm is provided in Algorithm 1
(adapted from references [27], [28]). E denotes the CBCT
operator, ∇ denotes spatial and temporal partial derivative
operators according to the subscript, and Al denotes the
PCA operator computed in section II-B. λ, µ, and γ are
user defined regularization weights. Vectors subscripted by the
spatio-temporal dimensions relate to the minimization of the
total variation according to definitions (6) and (8). Vectors
denoted by subscript P relate the minimization of the PCA
regularization term, while vectors with subscript N relate to
the enforcement of the non-negativity constraint.

A few adaptions were required for the different scenarios;
1) for the low-resolution and TV reconstructions no PCA
term was included, 2) for the low-resolution reconstruction no
temporal TV regularization was applied, and 3) for PICCS an
additional TV term (not shown) was included to regularize by
a temporally averaged reconstruction (α = 0.5, see reference
[11]). The numerical constants λ, µ, and γ influence the
convergence rate, however not the theoretical solution to
equations (3) and (7). Numerically however there is a certain
range for these constants within which the algorithm remains
stable. In the present work we used λ = 5.0, µ = 10.0, and
γ = 5.0 on normalized input data. These settings have been
used successfully, i.e. with no need for re-tuning, across the
datasets we have evaluated so far.
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Algorithm 1: Split-Bregman

Require: The log-transformed projection data f
Ensure: A four-dimensional volume u

according to equations (7)-(8).
procedure SPLIT-BREGMAN(f )

f (0) ← f

u(0) ← 0

for all i ∈ {x, y, z, t} do
d
(0)
i ← b

(0)
i ← 0

end for
d
(0)
P ← d

(0)
N ← b

(0)
P ← b

(0)
N ← 0

for k = 1 to N do
u(k) ← minu ||Eu− f (k−1)||22

+ µ||Alu− d
(k−1)
P + b

(k−1)
P ||22

+ γ||u− P (d
(k−1)
N )− b

(k−1)
N ||22

+ λ
∑

i∈{x,y,z,t} ||∇iu− d
(k−1)
i + b

(k−1)
i ||22

for all i ∈ {x, y, z, t} do
vi ← ∇iu

(k) + b
(k−1)
i

end for
w(n)←

√∑
i∈{x,y,z,t} vi(n)2

for all i ∈ {x, y, z, t} do
d
(k)
i ← shrink(vi,w, 1/λ)

b
(k)
i ← b

(k−1)
i + (∇iu

(k) − d
(k)
i )

end for
vP ← Alu

(k) + b
(k−1)
P

d
(k)
P ← shrink(vP , abs(vP ), 1/µ)

d
(k)
N ← P (u

(k)
N − b

(k−1)
N )

b
(k)
P ← b

(k−1)
P + (Alu

(k) − d
(k)
P )

b
(k)
N ← b

(k−1)
N − u(k) + d

(k)
N

f (k) ← f (k−1) + f −Eu(k)

end for
end procedure
where we have defined the non-negativity operator

P (d(i)) =

{
d(i) d(i) > 0
0 otherwise

and the soft thresholding operator

shrink(v,w, α)(i) = max (w(i)− α, 0) v(i)

w(i)
.

The computational core of the algorithm is the least squares
minimization problem in the first line of the loop. The remain-
ing code lines merely define element-wise vector operations.
The solution to the given least squares problem is obtained
analogously to the derivation of equation (5) from the least
squares problem (4). We run a few iterations (as stated in
section II-G) of a conjugate gradient solver to approximate
the solution. Pseudo-code for the conjugate gradient solver is
shown in Algorithm 2.

APPENDIX B
OPTICAL FLOW ESTIMATION

This appendix summarizes the derivation of the three-
dimensional optical flow algorithm used in the present work.
Pseudo-code for the implementation is provided. The method

Algorithm 2: Conjugate Gradient

Require: Vectors f and c.
Require: The number of iterations, N .
Ensure: A four-dimensional volume u

according to equation (5).
procedure CONJUGATE-GRADIENT(f , c)

u(0) ← 0

p(0) ← r(0) ← ET f + ΓT c

for k = 1, 2, · · · , N do
q(k) ← (ETE + ΓTΓ)p(k−1)

u(k) ← u(k−1)+(r(k−1)T r(k−1)/p(k−1)Tq(k))p(k−1)

r(k) ← r(k−1) − (r(k−1)T r(k−1)/p(k−1)Tq(k))q(k)

p(k) ← rk + (r(k)T r(k)/r(k−1)T r(k−1))p(k−1)

end for
end procedure

was initially proposed in reference [30] and previously eval-
uated for both conventional and cone beam computed tomog-
raphy [32], [33].

Optical flow estimation of an image volume series,
I(x, y, z, t), in which x, y, and z denotes the spatial dimen-
sions and t denote the temporal dimension, can be stated as
finding the vector field (δx, δy, δz, δt) such that

I(x, y, z, t) = I(x+ δx, y + δy, z + δz, t+ δt) (10)

Defining u = dx/dt, v = dy/dt, w = dz/dt, Ix = ∂I/∂x,
Iy = ∂I/∂y, Iz = ∂I/∂z, and It = ∂I/∂t equation (10)
can be approximately described by the well-know aperture
problem [30]–[33]:

Ixu+ Iyv + Izw + It = 0. (11)

Equation (11) states that the material derivatives of the image
intensities should be 0 for a valid solution to the registration
problem. It was noted in reference [30] that the assumption
of complete intensity conservation is unlikely to be met in
practice. Consequently the authors proposed to determine yet
another unknown variable, B, and compute the vector field
(u, v, w,B) minimizing for all voxels the data consistency
energy Eb defined as

Eb = B − Ixu− Iyv − Izw − It.

Regularization is required to specify an unique solution, thus
we minimize instead

argmin
u,v,w,B

∫∫∫ (
E2
b + α2E2

c + β2E2
I

)
dxdy dz (12)

where

E2
c = ||∇u||2 + ||∇v||2 + ||∇w||2 , E2

I = ||∇B||2,

and α, β are user defined regularization weights.
The displacement vector field corresponding to equation

(12) is derived from variational calculus, i.e. the Euler-
Lagrange equations. We refer to reference [32] for the full
derivation, providing here the solution following an iterative
Jacobi update scheme:
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Algorithm 3: Optical Flow Registration

Require: A normalized fixed image F .
Require: A normalized moving image M .
Require: An integer n ≥ 1.
Ensure: A displacement field transforming

the moving image to the fixed image.

procedure MULTIRESOLUTIONREGISTRATION(F,M, n)
if n > 1 then

Fd ← DownSample(F )
Md ← DownSample(M )
D ← MultiResolutionRegistration(Fd,Md,n− 1)
Du ← UpSample(D)
Mt ← M resampled from Du

Dn ← OpticalFlowEstimation(F , Mt)
Dt ← Du composited with Dn return Dt

else
D ← OpticalFlowEstimation(F , M ) return D

end if
end procedure

u(k+1) = ū(k) − β2Ix
(
Ixū

(k) + Iy v̄
(k) + Izw̄

(k) + It − B̄(k)
)
/C

v(k+1) = v̄(k) − β2Iy
(
Ixū

(k) + Iy v̄
(k) + Izw̄

(k) + It − B̄(k)
)
/C

w(k+1) = w̄(k) − β2Iz
(
Ixū

(k) + Iy v̄
(k) + Izw̄

(k) + It − B̄(k)
)
/C

B(k+1) = B̄(k) + α2
(
Ixū

(k) + Iy v̄
(k) + Izw̄

(k) + It − B̄(k)
)
/C

where ū, v̄, w̄, and B̄ denote the means of u, v, w, and B
respectively in a 3× 3× 3 neighborhood (excluding the voxel
itself), and C = β2I2x + β2I2y + β2I2z + α2 + α2β2.

We take a multi-resolution approach for which pseudo-
code is provided in Algorithm 3. The two code statements
“OpticalFlowEstimation(F , M )” denote the iterative compu-
tation of u, v, w, and B according to the previously stated
formulae; we iterate until no individual spatial displacement
vector changes more than 0.01 voxel between consecutive iter-
ations. The two regularization constants were set to α = 0.05
and β = 2.0 in the present work. Trilinear interpolation was
used to resample intra-voxel intensities in the moving image
M according to the displacement field.

APPENDIX C
GRADIENT PROJECTION ALGORITHM

This appendix contains pseudo-code for the gradient pro-
jection algorithm applied to equation (9) (adapted from [34],
[35]). The algorithm is depicted in Algorithm 4 where Et and
Et′ denote the CBCT operator for temporal phase t and the
remaining phases t′ respectively, Rt is the resampling operator
from temporal phase t to the remaining phases, and λt′ is the
regularization weight.

The algorithm reconstructs one temporal phase (t) and thus
should be repeated for all temporal phases. Note that (9)
corresponds to solving a linear least squares system. The solver
however is non-linear as it enforces a non-negativity constraint.
It is straightforward to add total variation regularization to

Algorithm 4: Barzilai Borwein Gradient Projection

Require: Projection data ft and ft′ .
Require: The number of iterations, N .
Ensure: Three-dimensional volume ut

according to equation (9).
procedure GRADIENT PROJECTION(ft, f ′t)

ut
(0) ← 0, η(0) ← 1

for k = 1, 2, . . . N do
g(k) ← ET

t (Etu
(k−1)
t − ft)+

λt′R
T
t′E

T
t′(Et′Rt′u

(k−1)
t − ft′)

for all voxels i : if u(k−1)(i) < 0 or g(k)(i) > 0

then g(k)(i) = 0

if k = 1 then
η(k) = ‖g(k)‖2

‖Etg(k)‖2+‖Et′Rt′g
(k)‖2

else
η(k) ← (u(k−1)−u(k−2))T (g(k)−g(k−1))

‖u(k−1)−u(k−2)‖2
end if
u
(k)
t ← u

(k−1)
t − η(k) · g(k)

for all voxels i : if u
(k)
t (i) < 0 then u

(k)
t (i) = 0

end for
end procedure

the solver if desired. One merely adapts the line updating
g(k) by adding the (weighted) gradient of the desired TV
term. Increasing the weighing of such a TV term would
gradually transform the outcome of the algorithm towards a
piecewise-constant appearance as we see for conventional TV
reconstructions.

We varied the regularization weight (λt′ ) according to the
distance between the temporal phases using a Gaussian. I.e.
neighboring temporal phases were weighted by 0.90, and the
temporal phase furthest distance from t were weighted by 0.08.
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