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The composite character of two-fermion bosons manifests itself in the interference of many composites

as a deviation from the ideal bosonic behavior. A state of many composite bosons can be represented as a

superposition of different numbers of perfect bosons and fermions, which allows us to provide the full

Hong–Ou–Mandel-like counting statistics of interfering composites. Our theory quantitatively relates the

deviation from the ideal bosonic interference pattern to the entanglement of the fermions within a single

composite boson.
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The quantum statistics of bosons is most apparent in
correlation functions and counting statistics. Characteristic
bosonic signatures are encountered for thermal states,
which feature the Hanbury Brown–Twiss effect [1–4], as
well as in meticulously prepared Fock-states [5–8], which
exhibit Hong–Ou–Mandel-like (HOM) interference.
Deviations from the ideal bosonic pattern in HOM setups
are often caused by inaccuracies in the preparation of
Fock-states and in the alignment of the setup, which induce
partial distinguishability between the particles [5,9–11].
Another source for deviations from perfect bosonic behav-
ior has received only little attention, limited to mixed states
[12,13]: since most bosons are composites (‘‘cobosons’’)
made of an even number of fermions, reminiscences of
underlying fermionic behavior are expected in many-
coboson interference. In analogy to partially distinguish-
able particles [10,11], one can intuitively anticipate
that the many-coboson wave function partially behaves in
a fermionic way, with impact on the resulting counting
statistics.

Here, we investigate such compositeness effects in
HOM interferometry of cobosons. The ideal bosonic inter-
ference pattern is jeopardized by the Pauli principle that
acts on the underlying fermions, an effect that becomes
relevant when the constituents populate only a small set of
single-fermion states. The effective number of single-
fermion states can be related to the entanglement between
the fermions, via the Schmidt decomposition. Not only
does entanglement, thus, guarantee the irrelevance of the
Pauli-principle for coboson states, but it also constitutes
the very many-body coherence property that ensures that
many-coboson interference matches the ideal bosonic pat-
tern [7,8]. The many-coboson wave function can be
described as a superposition of different numbers of
perfect bosons and fermions, with weights that are deter-
mined by the Schmidt coefficients. Using that intuitive
representation, we compute the exact counting statistics

in many-coboson interference and provide direct
experimental observables for compositeness. Properties
of the collective wave function of the fermionic constitu-
ents can, thus, be extracted from coboson interference
signals, while in the limit of truly many particles,
particularly simple forms for the interference pattern
emerge.
The bottom line of our discussion, the observable com-

petition of fermions for single-particle states, is a rather
general phenomenon that is not restricted to any particular
physical system. To render our analysis of many-coboson
interference tangible, however, we focus on an interfero-
metric setup that can be realized with trapped ultracold
atoms [14].
We consider strongly bound bi-fermion pairs that are

trapped in a two-dimensional potential landscape with
different horizontal and vertical coupling rates [15], as
depicted in Fig. 1, which is described by the Hamiltonian

FIG. 1 (color online). Setup for the interference of engineered
cobosons. N1 (N2) strongly bound bi-fermions are prepared in
the upper (lower) lattice at Jv � Jh, such that each bi-fermion is
governed by the local energies �j and the tunneling rate Jh.

The barrier between the lattices is then ramped down, such that
Jv � Jh and vertical tunneling takes place. The total number of
bi-fermions in the upper and lower lattice is then counted. The
graphical representation is adapted from Ref. [15].
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where d̂yq;j ¼ âyq;jb̂
y
q;j creates a bi-fermion consisting of an

a- and a b-type fermion in the jth site of the upper or lower
lattice (q ¼ 1, 2); Jh (Jv) is the effective tunneling strength
along (between) the lattices, and �j defines a local energy

landscape [14]. We assume that, initially, Jh � Jv, and
multicoboson states are prepared in the horizontally
extended lattice q by [16,17]

ĉyq ¼ XS
j¼1

ffiffiffiffiffi
�j

q
d̂yq;j ¼

XS
j¼1

ffiffiffiffiffi
�j

q
âyq;jb̂

y
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A coboson is, thus, a horizontally delocalized bi-fermion,
and the S coefficients �j are then the Schmidt coefficients

of the two-fermion state.

The distribution ~� is conveniently characterized by its
power sums

MðmÞ ¼ XS
j¼1

�m
j ; (3)

where normalization implies Mð1Þ ¼ 1 and Mð2Þ ¼ P is
the purity of either reduced single-fermion state. We con-
sider an initial state of N1 cobosons in the upper and N2

cobosons in the lower lattice [14],

j�i ¼ ðĉy1 ÞN1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N1

N1!
p ðĉy2 ÞN2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�N2
N2!

p j0i; (4)

where we assume N1 � N2, and �N is the coboson nor-
malization factor [16–20], a symmetric polynomial [21]
given by �N ¼ �ðf1; . . . ; 1g|fflfflfflfflffl{zfflfflfflfflffl}

N

Þ, with

�ðfx1; . . . ; xNgÞ ¼
Xi�j)pi�pj

p1 ;...;pN
1�pj�S

YN
q¼1

�
xq
pq
: (5)

To assess the behavior of the cobosons, we let the bi-
fermions tunnel vertically between the two lattices by
setting Jv � Jh and letting the system evolve for a time
of the order 1=Jv. Thus, beam splitter-like dynamics cou-
ples the two lattices, while tunneling processes within the
lattices, induced by Jh, can be neglected on this time scale.
The Schmidt modes j are, therefore, left unchanged. Time
evolution until t implements a beam splitter with reflectiv-
ity R ¼ cos2ðtJv=2Þ. In principle, the counting statistics of
bi-fermions in the two lattices can be obtained by integrat-
ing the dynamics induced by Eq. (1) for the initial state j�i
given in Eq. (4) and taking the expectation values of the
counting operators

Â n1;n2 ¼
X1�jk;lm�S

j1<j2<���<jn1
;

l1<l2<���<ln2

Yn1
k¼1

d̂y1;jk d̂1;jk
Yn2
m¼1

d̂y2;lm d̂2;lm ; (6)

which witness the probability to find exactly n1 (n2) bi-
fermions in the first (second) lattice. This procedure, how-
ever, is computationally expensive and does not offer an
intuitive physical picture. By exploiting the symmetry
properties of the state [Eq. (4)], one can show [14] that
the behavior of cobosons is imitated exactly by a superpo-
sition of states with a different number of perfect bosons
and fermions, in analogy to partially distinguishable parti-
cles [10,11]. When the distribution of the bi-fermions
along the lattices is neglected, j�i exhibits the same total
counting statistics in the two lattices as the state

jc i ¼ XN2

p¼0

ffiffiffiffiffiffiffi
wp

p j�ðpÞi; with (7)
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2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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3
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3
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where ĝyq (f̂yq;j) creates a boson (j-type fermion) in the

lattice q. The weight of the component with p pairs of
fermionically behaving bi-fermions depends on the
Schmidt coefficients and reads [14]

wp ¼ N1

p

� �
N2

p

� �
p!

�N1
�N2

�ðf2; . . . ;2|fflfflffl{zfflfflffl}
p

; 1; . . . ;1|fflfflffl{zfflfflffl}
N1þN2�2p

gÞ: (9)

Combinatorially speaking, wp is the probability that,

given two groups of N1 and N2 objects with properties

distributed according to ~�, and assuming that all objects in
either group carry different properties, one finds p pairs of
objects with the same property when the two groups are
merged. In the present context, wp denotes the population

of the state components in which the Pauli principle
affects p pairs of bi-fermions. The term j�ð0Þi, thus,
describes perfect bosonic behavior, its weight w0 ¼
�N1þN2

=ð�N1
�N2

Þ can be bound via the purity P and the

particle numbers N1, N2 [17,20]:

ðL�N1Þ!ðL�N2Þ!
ðL�N1�N2Þ!L! �w0

� ð1� ffiffiffiffi
P

p Þð1þ ffiffiffiffi
P

p ðN1þN2� 1ÞÞ
ð1þ ffiffiffiffi

P
p ðN2� 1ÞÞð1þ ffiffiffiffi

P
p ðN1� 1ÞÞ ;

(10)

where L ¼ d1Pe.
We can now derive the counting statistics of cobosons

after time evolution until t ¼ �=2=Jv, which corresponds
to a balanced beam splitter with R ¼ T ¼ 1=2. The proba-
bility PtotðmÞ to find m cobosons in the upper lattice is the
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sum of the resulting probabilities from the different con-
tributions in Eq. (7),

PtotðmÞ ¼ XN2

p¼0

wpPðm;pÞ; (11)

where Pðm;pÞ is the probability to find m particles of any
species in the upper lattice, given the state j�ðpÞi defined
in Eq. (8) and the beam splitter reflectivity R ¼ 1=2 [14].

The simplest case is given by two interfering cobosons
(N1¼N2¼1), for which we findw0 ¼ P andw1 ¼ 1� P:

Ptotð1Þ ¼ P; Ptotð0Þ ¼ Ptotð2Þ ¼ 1� P

2
: (12)

For P ! 1, the Pauli principle dominates and one
always finds one particle in each lattice. In contrast to
the interference of unbound boson pairs that can break up
dynamically [22], a perfect bosonic dip emerges here in the
limit of vanishing purity, P ! 0.

Higher-order power sums MðmÞ with m � 3 become
relevant when more than two cobosons interfere. For ex-
ample, the interference of N2 ¼ 1 with N1 cobosons
reflects the normalization ratio �Nþ1=�N [16–18,23,24]:

PtotðmÞ ¼ �N1þ1

�N1

Pðm; 0Þ þ
�
1� �N1þ1

�N1

�
Pðm; 1Þ: (13)

In general, the balance between all the weights
w0; . . . ; wN2

governs the counting statistics. Since the

weights wp depend on power sums MðmÞ up to order

N1 þ N2 [14], the characteristics of the distribution ~� can
be established through interference signals. For N1¼
N2¼2, we illustrate the decomposition [Eq. (7)] in Fig. 2.

The ideal boson interference pattern Pðm; 0Þ is jeopardized
by the finite purity P ¼ 1=4, the contributions of the single
fermion-pair and double fermion-pair part in the wave
function lead to the altered signal PtotðmÞ.
Distributions with the same purity P may have different

higher-order power sumsMðmÞ, with consequently distinct
counting statistics. Keeping P constant, the counting sta-
tistics is extremized by two particular distributions: the
upper bound in Eq. (10) is saturated by peaked distribution
~�ðpÞ

with �ðpÞ
1 > �ðpÞ

2 ¼ � � � ¼ �ðpÞ
S , in the limit S ! 1; the

lower bound is saturated by the uniform distribution ~�ðuÞ

with �ðuÞ
1 � �ðuÞ

2 ¼ � � � ¼ �ðuÞ
L�d1=Pe, for fractional purities

P ¼ 1=L [20]. The counting statistics for N1 ¼ N2 ¼ 6 is

shown in Fig. 3. The weights wuðpÞ
k of the uniform (peaked)

distributions differ considerably (see lower panel), which is
reflected by the counting statistics [upper panel, note that
PðmÞ ¼ Pð12�mÞ due to symmetry]. Only one Schmidt
coefficient in the peaked distribution is finite in the limit

S ! 1; thus, only the weights wðpÞ
0 and wðpÞ

1 are nonvan-

ishing: the interference patterns of 12 and of 10 bosons

take turns. Instead, all weights wðuÞ
0�j�6 alternate for the

uniform distribution. Kinks emerge at fractional values of
P, when a new nonvanishing Schmidt coefficient emerges.
For P ! 1=6, fully fermionic behavior is attained, and one
always finds six cobosons in each lattice.

FIG. 2 (color online). Counting statistics for the coboson-state
j�i with N1 ¼ N2 ¼ 2, and of its components with different
numbers of bosons and fermions j�ðpÞi, p ¼ 0, 1, 2. Dark blue
circles represent bosonically behaving bi-fermions, light orange
squares and triangles stand for fermionically behaving bi-
fermions. The total counting statistics PtotðmÞ is the weighted
sum [Eq. (11)] over the different components of the wave
function. While j�ð0Þi exhibits perfect bosonic behavior,
j�ðp � 1Þi are partially fermionic, which leaves a signature in
the counting statistics. Here, R ¼ 1=2 and �1 ¼ � � � ¼ �4 ¼
1=4, such that w0 ¼ w2 ¼ 1=6, w1 ¼ 2=3.

FIG. 3 (color online). Upper panel: counting statistics PtotðmÞ
as a function of the purity, for the uniform (u) (right-hand part)

and peaked (p) (left-hand part) distributions ~�ðu=pÞ. Lower panel:
corresponding weights wðp=uÞ of the coboson wave function
given in Eq. (7). We set N1 ¼ N2 ¼ 6, R ¼ 1=2. The counting
statistics is perfectly bosonic for vanishing purity, P ! 0, while
cobosons behave as fermions for the uniform distribution and
P ¼ 1=6. The number of nonvanishing Schmidt-coefficients in

the uniform distribution is L ¼ d1=Pe, hence the weights wðuÞ
l

with l < N � L� 1 vanish: there are at least N1 � L� 1 pairs
of fermions, which results in the kinks in the weights. The
binomial distribution corresponds to the statistics of distinguish-
able particles.
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The dependence of PtotðkÞ on the power sumsMðmÞ can
be used to infer the latter from measured counting statistics
for different N1, N2. The purity P follows immediately for
N1 ¼ N2 ¼ 1 via Eq. (12); in general,MðmÞ is inferred by
the counting statistics of a total ofN1 þ N2 ¼ m cobosons.
Since higher-order power sums are constrained by Jensen’s
and Hölder inequalities [25],

Mðm� 1Þðm�1Þ=ðm�2Þ � MðmÞ � Mðm� 1Þm=ðm�1Þ;
(14)

bounds for higher-order MðmÞ become tighter with
increasing knowledge of MðmÞ, as depicted in Fig. 4.

When the exact counting statistics cannot be retrieved
and many (N * 1000) cobosons are brought to interfer-
ence, such as in the interference of Bose-Einstein conden-
sates [26], the granular structure of the interference pattern
becomes secondary. The impact of imperfect bosonic
behavior can then be incorporated into a macroscopic
wave function approach [7]; i.e., the number of particles
is treated as the amplitude of a single-particle wave func-
tion. Fock-states are modeled by a random phase between
the different components of the wave function. When the
fractions Ij ¼ Nj=ðN1 þ N2Þ of ideal bosons are prepared
in the two lattices, the particle fraction I in the upper lattice
after beam splitter dynamics obeys the probability distri-
bution [7]

P MWFðI; I1; I2Þ ¼ 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4RTI1I2 � ðI� RI1 � TI2Þ2

p ;

for 4RTI1I2 > ðI� RI1 � TI2Þ2, while it vanishes other-
wise. For cobosons, a finite fraction of fermions needs to be
accounted for in each lattice. The probability distribution
for the particle fraction I then becomes

P ðIÞ ¼
Z I2

0
dIfW ðIfÞPMWFðI � If; I1 � If; I2 � IfÞ;

whereW ðIfÞ is the probability distribution for the fraction
of fermions If in each lattice. For the uniform state ~�ðuÞ

with S Schmidt coefficients (P ¼ 1=S),

wðuÞ
p ¼ N1!N2!ðS� N1Þ!ðS� N2Þ!

S!ðSþ p� N1 � N2Þ!ðN1 � pÞ!ðN2 � pÞ!p! :
(15)

The continuous limitW ðuÞðIfÞ is obtained for N1 þ N2 ¼:

N ! 1, when N1, N2, p, and S are scaled linearly with N:

W ðuÞðIfÞ ¼ lim
N!1ðNwðuÞ

ðp¼If�NÞÞ ¼ �ðIf � �I1I2Þ; (16)

and the total number of bi-fermions per Schmidt mode is
constant, � ¼ N=S. Since the number of bi-fermions in
either lattice is limited by S, it holds 0<� � 1=I1 � 2.
The fraction of perfect fermions is, thus, exactly the frac-
tion of expected pairs of bi-fermions in the same Schmidt-
mode, �I1I2, which gives

P ðuÞðIÞ ¼ PMWFðI� �I1I2; I1ð1� �I2Þ; I2ð1� �I1ÞÞ:
The width W of this distribution is closely related to the
fraction of fermions,

W ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RTI1I2ð1� �I1Þð1� �I2Þ

q
; (17)

and becomes narrower with increasing number of bi-
fermions per Schmidt mode, �. In principle, this may
jeopardize Fock-state-interferometry with nonelementary
particles such as neutral atoms, since the width of the
intensity distribution is used to infer a small phase (which
translates here to a reflectivity R).
Trapped ultracold atoms typically feature very small

electron-state purities of the order of 10�13 [17,27], such
that atom interferometers are not sensitive to the compo-
siteness of the atoms. With attractively interacting fermi-
onic atoms in tunable external potentials [28,29], the
transition between fully bosonic (P ! 0) and fully fermi-
onic (P ! 1) behavior may be implemented experimen-
tally by varying the size of the available single-fermion
space and observing the resulting interference pattern
when bi-fermions are brought to interference [14].
In conclusion, even though two fermions may be arbi-

trarily strongly bound to a coboson with no apparent sub-
structure, deviations from ideal bosonic behavior can be
observable in many-coboson interference. Not the binding
energy, but the entanglement between the fermions is
observable on the level of the cobosons. The superposition
[Eq. (7)] allows us to understand the partially fermionic
behavior of cobosons, and ultimately, leads to simple
expressions for the interference of BECs [Eq. (17)]. The
methods that we have exposed can be extended immedi-
ately to larger numbers of sublattices and to more complex
interference scenarios [8].

FIG. 4 (color online). Normalized power sums and constraints.
The normalization to Pm=2 is chosen such that the upper bound is

constant. A randomly chosen distribution ~� leads to a certain
hierarchy of power sums (black stars). The measurement of
interference signals with N1 and N2 cobosons reveals the power
sums up to order N1 þ N2, which leads to the indicated con-
straints on higher-order MðmÞ with m � N1 þ N2 þ 1 (blue
filled squares, orange open squares, green filled diamonds, and
red filled circles), according to Eq. (14).
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Cobosons always constitute indistinguishable particles;
two cobosons in the two lattices share the same distribution

of Schmidt coefficients ~�. The impact of partial distin-
guishability and the effects of compositeness can actually
be discriminated in the experiment: while partially distin-
guishable particles can be described as a superposition of
perfect bosons and distinguishable particles [10,11], cobo-
sons exhibit the behavior of a superposition of bosons and
fermions, which naturally leads to differing interference
patterns in the two cases (see also the binomial distribution
in Fig. 3, which is attained for distinguishable particles).

The role of entanglement for bosonic behavior is two-
fold: it circumvents the Pauli principle for composite
bosons [16–18,20,24], and it maintains many-particle co-
herence. Quantum correlations between the fermions are
necessary for the bosonic exchange symmetry in the rele-
vant parts of the wave function that allows the representa-
tion in Eq. (7). If mixed states of bi-fermions are prepared
instead of entangled states, the exchange symmetry and
the encountered bosonic behavior break down—even
though the combinatorial argument that relates to the num-
ber of accessible states remains valid. The visibility of
correlation signals of, e.g., large molecules, is thus not
only affected by the mixedness of the molecules at finite
temperatures, but also by the consequent loss of many-
particle coherence.
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[4] A. Perrin, R. Bücker, S. Manz, T. Betz, C. Koller, T.
Plisson, T. Schumm, and J. Schmiedmayer, Nat. Phys. 8,
195 (2012).

[5] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59,
2044 (1987).

[6] Y. L. Lim and A. Beige, New J. Phys. 7, 155 (2005).
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