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Abstract

We propose a simple model in which realized stock market return volatility and implied

volatility backed out of option prices are subject to common level shifts corresponding to

movements between bull and bear markets. The model is estimated using the Kalman filter

in a generalization to the multivariate case of the univariate level shift technique by Lu and

Perron (2008). An application to the S&P500 index and a simulation experiment show that

the recently documented empirical properties of strong persistence in volatility and forecasta-

bility of future realized volatility from current implied volatility, which have been interpreted

as long memory (or fractional integration) in volatility and fractional cointegration between

implied and realized volatility, are accounted for by occasional common level shifts.
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1 Introduction

The volatility of asset returns is among the most fundamental variables for asset pricing, deriva-

tive pricing, hedging, and risk management. Since future returns are valued and hedged, the

forecasting of volatility of future returns from variables in the current information set is of par-

ticular importance. Given that observed prices of financial options are in the information set and

reflect expectations of option market participants, implied volatility backed out of option prices

should be informative about future volatility. Recent literature documents strong persistence

in stock market volatility, whether measured as realized volatility from high-frequency returns

within consecutive time intervals or as implied volatility from option prices at the beginning of

each interval. Furthermore, the resulting realized and implied volatility series move together,

so that implied volatility indeed predicts a considerable portion of the subsequently realized

volatility. These findings have been interpreted as long memory or fractional integration in each

of the two volatility series, and fractional cointegration between the two. The issue arises where

such long memory should stem from, with current changes in volatility apparently depending

on how volatility changed many periods back. In this paper, we propose a simple model in

which realized and implied volatility are subject to occasional common level shifts, as could be

generated, e.g., by changing bull and bear markets, movements between booms and busts, the

recurrent onsets of financial crises, etc. This provides a plausible economic explanation of the

received evidence.

The construction of a time series of realized volatility measures by basing volatility for each

period, say, month, on returns measured at higher frequency during the course of the month

follows Merton (1980), French et al. (1987) and Schwert (1989). The close relation between the

monthly series of realized volatility and implied volatility backed out of stock index options at

the beginning of the month is documented by Christensen and Prabhala (1998). Thus, implied

volatility forecasts subsequent realized volatility, subsuming the information content of past

realized volatility. Recent advances in data access has allowed basing realized measures on

returns of higher frequency than the earlier daily returns, say, 5-minute returns, or transaction

data. This allows very precise measurement of realized volatility simply as the sum of squared

returns over the period, instead of the earlier sample standard deviation calculations, since

the former converges to the integrated local volatility over the period in a general diffusion

setting as sampling frequency is increased, see Barndorff-Nielsen and Shephard (2002). Using
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this high-frequency data technique for measurement, Andersen et al. (2001b) show that the

resulting realized stock market volatility series is strongly persistent and is well described is

a long memory or fractionally integrated process, with order of fractional integration in the

vicinity of .4, i.e., more persistence than a stationary ARMA-type process, but less than a unit

root process. Christensen and Nielsen (2006) show that the corresponding implied volatility

series is similarly well approximated by a fractionally integrated process, and that the relation

between implied and realized volatility may be described as one of fractional cointegration, i.e.,

the two long memory series move together, and a linear combination is serially uncorrelated,

consistent with option prices incorporating all available information relevant for future volatility.

This is shown using asymptotic theory for fractional cointegration developed for the purpose,

and Bandi and Perron (2006) confirm the results using subsampling. Most recently, Busch et al.

(2010) show that implied volatility backed out of a standard Black and Scholes (1973) style option

pricing formula continues to forecast volatility better than past realized measures, even when

the latter are adjusted for jumps in asset prices. Thus, the evidence is strong that volatility

is persistent, and so should be forecastable, and that, indeed, the option-implied forecast is

particularly important.

It is somewhat surprising that volatility changes in the distant past should matter so greatly

for current volatility changes, as implied by a long memory process for volatility. If, instead,

the empirical findings are the results of occasional level shifts in volatility, then the fractional

integration characterization of each of the two volatility series should be replaced, and the

fractional cointegration relation between implied and realized volatility should be reconsidered,

as well. Thus, we introduce a model in which realized and implied volatility are linked by

an underlying common level shift process. Our model extends the idea of co-breaking, see

Hendry and Massmann (2007), to the fractional cointegration case, see also Morana (2002,

2007), showing that the results from the fractional cointegration analysis may be accounted for

by common level shifts. Our common level shift model generalizes the univariate level shift model

of Lu and Perron (2008) to the multivariate case, with the persistence of each series stemming

from a common level shift process. A recent debate in the univariate literature focuses on

the possible confusion between true long memory processes and short memory processes with

structural changes in levels. It is well known that when a stationary process is contaminated

by level shifts, the fractional integration order is positively biased. For example, Perron (1990)

points out that structural changes and unit roots can easily be confused. Granger and Hyung
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(2004) show that the long memory property of volatility could be induced spuriously by the

presence of structural breaks, possibly stemming from financial crises. The breaks are identified

following the procedure outlined in Bai and Perron (2003). On the other hand, as noted by the

authors, the presence of clusters in the levels of the process is also a feature of true long memory

processes, so their procedure seems to overreject the possibility of true fractional integration.

More recently, Ohanissian et al. (2008) propose a test for evaluating the presence of true long

memory processes based on their self-similarity property and Dolado et al. (2005) provide a time-

domain test for the null hypothesis of I(d) against I(0) plus structural breaks that is based on

the same principles as the well-known Dickey-Fuller unit root test. Lu and Perron (2008) present

an univariate random shift model for stock volatilities, exploiting a procedure to estimate the

probability and the magnitude of the shifts, and showing that the random occurrence of shifts

induces spurious long memory, while Perron and Qu (2010) propose a simple test of long memory

against mean shifts, that is based on the number of frequencies used in the log-periodogram

regression to estimate d.

We estimate our common level shift model using the Kalman filter in a generalization to

the multivariate case of the univariate level shift technique by Lu and Perron (2008). We

consider both an application to the S&P500 index and a simulation experiment. We show

that in a multivariate context, the presence of common shifts induces confusion between true

and spurious fractional cointegration, where the term spurious fractional cointegration indicates

that the series are spuriously of long memory, and a linear combination of them eliminates

the common deterministic trend. To this end, we study both the regression relation between

implied and realized volatility, as in Christensen and Nielsen (2006) and Bandi and Perron

(2006), and an alternative system representation of Johansen (2008), namely, a fractional vector

error correction (FVEC) model that is of interest in its own right, as it captures the different

degrees to which implied and realized volatility adjust to shocks to their long run relation, and

does so without imposing zero and unit integration orders. The FVEC model allows for a formal

test of fractional cointegration, as in Lasak (2009). As suggested by Lasak (2008) and Johansen

and Nielsen (2010), the parameters are all estimated jointly by a profile likelihood estimator

based on the reduced rank regression of Johansen (1988).

The paper is organized as follows. Section 2 provides the estimation technique of an al-

ternative model setup to account for the presence of persistence in a multivariate framework,

considering the presence of a common level shift process with random intensity that drives jointly
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the dynamics of realized and implied volatility. Section 3 introduces the concept of fractional

cointegration and the related estimation techniques. Section 4 presents the data and reports

the statistical properties of the sample, while section 5 discusses the estimation results for the

alternative models. In section 6 we evaluate the performance of the fractional cointegration tests

in small samples and according to alternative data generating processes. Section 7 concludes.

2 Common Level Shifts

Our purpose is to model the implied-realized volatility as they were generated by a bivariate

common shift process and to evaluate the power of parametric fractional cointegration tests,

when the true DGP is given by a multivariate short memory process plus a common level shift

component. In particular, we extend the model of Lu and Perron (2008) to the following bivariate

model

yt = τtι + ct (1)

where the ct = Φ1ct−1 + ... + Φpct−p + ǫt is a VAR(p) term, where ǫt ∼ N(0, Σ) and Σ is a 2× 2

covariance matrix; ι is a 2 × 1 vector of ones, and τt is the common random shift component

τt = τt−1 + δt (2)

with ηt ∼ N(0, σ2
η) and δt = πtηt where πt is a binomial variable that takes value 1 with

probability ν, so that if πt = 1 a level shift occurs.

Given this model setup, it is evident that βyt ∼ I(0) where β = [1,−1], that is the difference

y1,t − y2,t = c1,t − c2,t = zt ∼ I(0). It is then clear that a linear combination of the two series

eliminates the common feature, resulting in a short memory process, so that common level shifts

can be easily confused with the presence of fractional cointegration.1 Despite its similarity with

the Markov regime switching models, see Hamilton (1989), this model setup presents more

flexibility since it allows for a potentially infinite number of possible regimes, given that the

magnitude of the level shifts is drawn from a normal distribution. For example, in Morana

(2002) and Morana (2007) the concept of cobreaking is introduced in a Markov switching setup,

where the number of regimes is set a priori. The estimation procedure is outlined in Appendix

A. This procedure provides the estimates of ν, σ2
η and Σ, allowing to disentangle the noisy

1Mikosch and Starica (2004) derive in closed form the autocorrelation function of an I(0) process with level
shifts showing that this is able to mimic the long range dependence of truly long memory processes.
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components from the common shift process, that induces persistence to both series. Section

6 discusses the evaluation of the power of the fractional cointegration tests with respect to a

common level shift process through a Monte Carlo exercise on the basis of the empirical estimates

obtained with the procedure outlined above.

We also provide a selection procedure to identify the level shifts in the multivariate context,

based on the estimated probability ν̂. In particular, we provide an extension of the method

of Bai and Perron (2003) to the multivariate case where the shift process is restricted to be

common. Our method is based on the following algorithm:

1. Calculate the predicted average number of shifts in the sample, [ν̂ · T ];

2. Compute the combination of all the possible position of the number of break dates;

3. For each possible combination of shift dates, compute and subtract the mean of each

subsample;

4. For each subsample, estimate a VAR(p) on the demeaned sample;

5. Compute the VAR(p) residuals for each choice of break dates;

6. Choose the combination of break dates that minimizes the sum of the squared residuals.

3 Fractional Cointegration

The concept of cointegration has been widely studied during the last three decades, since the

original paper by Granger (1981). Most of the analysis has concentrated on the special case

where a linear (or nonlinear) combination of two or more I(1) variables is I(0). Tests for I(1)/I(0)

cointegration are carried out in a regression setup, as proposed by Engle and Granger (1987),

or investigating the rank of the cointegration matrix in a system of equations following the

Johansen (1991) procedure.

More recently, part of the literature has focused on the possibility of an extension of the concept

of cointegration to fractional processes, i.e. integrated of order d, with d > 0. In particular,

given d < 1
2 , xt ∼ I(d) if

(1 − L)dxt = ǫt (3)
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where ǫt ∼ I(0) and the term (1 − L)d results in the binomial expansion

(1 − L)d =
∞∑

i=0

Γ(i − d)

Γ(−d)Γ(i + 1)
Li (4)

If d > −1
2 the process is invertible and possesses a linear (Wold) representation, and if d < 1

2

it is covariance stationary. For d < 0, the process is said to be anti-persistent, while for d > 0

it is persistent and it has long memory. In this context, the term fractional cointegration refers

to a generalization of the concept of cointegration, since it allows linear combinations of I(d)

processes to be I(d− b), with 0 < b ≤ d. The term fractional cointegration underlies the idea of

the existence of a common stochastic trend, that is integrated of order d, while the short period

departures from the long run equilibrium are integrated of order d−b. b stands for the fractional

order of reduction obtained by the linear combination of I(d) variables.

According to the definition in Granger (1986), two (or more) I(d) series are fractionally cointe-

grated if there exists a linear combination that is I(d − b), with b ≤ d. Thus the errors are of

lower order of fractional integration than the levels. This means that the series share fraction-

ally integrated stochastic trends of different orders (I(d) and I(d− b)), and a linear combination

eliminates the largest. A typical situation is when zt = (x′
t, yt) ∼ I(d) and et ∼ I(d − b) with

d > d − b ≥ 0 in the model

yt = β′xt + et. (5)

Robinson (1994) shows that OLS estimator of β is inconsistent when the errors are fractionally

integrated. He introduces in this context the narrow-band frequency domain least squares, a

semiparametric method2, and proves it is consistent even in situations where the error term

is correlated with the regressors. Once that the cointegration vector, β̂m has been estimated

with respect to the first m frequencies, we look to the estimated fractional integration order of

the residuals, d̂ − b̂, testing whether it is equal to 0, meaning that the fractional reduction is

complete and d = b.

The regression approach to the implied-realized volatility relation is focused on the specifi-

cation

RVt = α + βIVt + et t = 1, ..., T (6)

where RVt is realized volatility and IVt implied volatility. Unbiasedness of the implied volatility

2See Appendix B for a description of this estimation method.
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forecast corresponds to the hypothesis β = 1 ∩ α = 0. Following Christensen and Nielsen

(2006) and Bandi and Perron (2006), the classical OLS estimator cannot be used to test market

efficiency, when interpreting the equation (6) as a cointegration relation. In fact, given that IVt

and RVt are fractionally integrated, the long run relationship between them cannot be tested

using OLS, since the correlation between IVt and the error term introduces a bias term in the

estimation of the cointegration vector. Therefore, Christensen and Nielsen (2006) and Bandi

and Perron (2006) propose to estimate equation (6) with the narrow-band frequency domain

least squares, henceforth NBLS, that focuses on frequencies in the neighborhood of zero and

provides unbiased estimates of the cointegration vector. Christensen and Nielsen (2006) find that

the condition β = 1 ∩ α = 0 is satisfied when equation (6) is estimated with NBLS. They also

find that the fractional integration order of residuals is zero, meaning that the linear combination

RVt − IVt ∼ I(0). Moreover, as pointed out by Bandi and Perron (2006), estimating the linear

projection of RVt on IVt with OLS induces correlation between the residuals and IVt, given

the presence of volatility risk premium, since the expected realized volatility depends linearly

on IVt and the risk premium. They also find unbiasedness in the realized-implied volatility

relation. On the other hand, Nielsen (2007) proposes a new testing methodology that provides

jointly estimates of the integration orders and the cointegration vector in (6) assuming that

the cointegration rank is equal to one and the integration order, d, of realized and implied

volatility is less than 1/2. The estimation method is based on the local Whittle approximation

of the likelihood function concentrated with respect to the cointegration vector. Using the same

dataset as Christensen and Nielsen (2006), Nielsen (2007) notes that the evidence of long run

unbiasedness becomes less clear, when jointly testing the null β = 1 ∩ de = 0, where de is the

integration order of the cointegration residuals.

We evaluate the relative performance of the option market in adjusting its forecasts of the

future realized volatility, given a shock to the long run equilibrium relation that represents the

link between realized and implied volatility. To this end, we model the realized-implied volatility

relation according to an alternative parametric setup that explicitly account for the long-run

relation implied by the unbiasedness hypothesis. We explore the relationship between realized

and implied volatility in terms of fractional cointegration by means of a fractional vector error
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correction models (FVECM),

∆d log RVt = αR(1 − ∆b)∆d−b(log RVt + µ + β log IVt) + ǫRV
t

∆d log IVt = αI(1 − ∆b)∆d−b(log RVt + µ + β log IVt) + ǫIV
t

where ǫt = (ǫRV
t , ǫIV

t ) are assumed to be Gaussian with mean zero and variance Ω and α =

(αR, αI) and β = (1, β) are the error correction and cointegration vectors. The core (1 −

∆b)∆d−b(log RVt +β log IVt) defines the cointegration relation, where d represents the fractional

integration order of the realized and implied volatilities. There will be full cointegration in the

case d = b, meaning that the residuals from the cointegration relation are integrated of order

0. In the FVECM model, the element αi of the vector α measures the single period response of

variable i to the shock on the equilibrium relation. In our case, if αi is found to be significant,

then the realized (implied) volatility moves to restore the unique long-run relationship implied

by the unbiasedness hypothesis. In addition, the FVECM allows for a flexible characterization

of the cointegration relation, where the integration orders of the endogenous variables, d, and

the cointegration residuals, d − b, are not restricted to assume values 1 and 0, respectively.

This model presents several advantages over the traditional cointegration regression; in fact

• The integration order of the endogenous variables and the fractional cointegration order

are defined by two parameters d and b, with 0 < b ≤ d, that are jointly estimated;

• It allows for a formal test of fractional cointegration based on the cointegration rank, as

in Lasak (2009);

• The specification of the model makes it an instrument for evaluating the dynamic response

of a variable to a shock to an other variable in the system;

• The vector of loading parameters α gives a measure of the speed of adjustment to the long

run equilibrium given a short run departure from that, allowing us to draw conclusions on

the relative efficiency of the option market;

• As suggested in Lasak (2008) and Johansen and Nielsen (2010), the parameters are all

estimated jointly by a profile likelihood estimator based on the reduced rank regression

of Johansen (1988). This estimation procedure differs from the two step procedure imple-

mented by Christensen and Nielsen (2006) and Bandi and Perron (2006), and we consider

both in the following.
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• In general notation, the system representation of Johansen (2008) 3 is

∆dXt = (1 − ∆b)(∆d−bαβ∗′Yt) +
K∑

j=1

Γj∆
dLj

bXt + ǫt (7)

and in the present case Yt = [log RVt, log IVt, 1]′ and β∗′ = [1, β, µ], so that RVt and IVt

are fractionally cointegrated if rank(Π∗) = rank(αβ∗′) = 1. As pointed out by Johansen

(2008), when β′α = −Ir, then model (7) corresponds to the triangular system studied in

Breitung and Hassler (2002), so that we have a representation in terms of common trends

factors and equilibrium errors. A corresponding representation in terms of cointegrated

FIVAR, see Duecker and Startz (1998) for an application, is not yet available. Assuming

that the cointegration rank, r, is known already, model (7) is estimated following the

procedure outlined in Lasak (2008). Lasak (2008) considers the fractional reduction of

integration order, b, in non-stationary systems. In particular, the model (7) is estimated via

a maximum likelihood technique analogous to that developed by Johansen (1991) for the

standard VECM, where d and b are restricted to be equal to 1. Details on this estimation

method are in Appendix C. The asymptotic distribution of the FVECM estimators are

studied in Lasak (2008) and Johansen and Nielsen (2010), while this estimation procedure

has been employed by Rossi and Santucci de Magistris (2009), who show finite sample

properties of the estimators through a Monte Carlo exercise.

4 Data

Our dataset consists of options prices on monthly future contracts on S&P 500, from April 1988

until October 2007. For each month, we sample the initial and the expiring date of the option

contract. In particular, since the option contracts expire on the Friday immediately preceding

the second Saturday of each month, we select the Tuesday just after the expiration date as

initial date for the next monthly contract4. In this way, we avoid the presence of overlapping

observations and the possible bias induced by the transaction on the first Monday just after the

delivery of the new contract.

The (annualized) monthly implied volatility, IVt, is then calculated on a traded at-the-money

3Johansen (2008) presents an alternative parametrization, with respect to that suggested by Granger (1986).
This model setup allows for Granger representation, based on the new lag operator Lb = 1 − (1 − L)b. On the
other hand, the error correction relation is the same in both Granger (1986) and Johansen (2008).

4Business holidays may modify this sampling rule.
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option contract with one month to maturity. In particular, we employ the well known Black

and Scholes (1973) formula, where the no arbitrage price, C, of an European call is given by

C(F, K, τ, r, σ) = e−r(τ+∆)[FΦ(δ) − KΦ(δ − σ
√

τ)

δ =
ln(F/K) + (1

2σ2)τ

σ
√

τ
(8)

where F is the spot price of the underlying asset, K the strike price, r is the riskless interest

rate, Φ(.) is the standard normal c.d.f., and σ is the volatility of the underlying asset. The

monthly implied volatility is recovered, given the observed price of the option, Co
t , inverting (8)

and solving numerically with respect to σ. Repeating this procedure for every period t, it will

result in the series of implied volatility, IVt, for each month t ∈ [1, T ].

Since our dataset contains also the intradaily futures prices on S&P 500, we are able to

calculate a precise ex-post measure of the volatility observed on the underlying futures contract

during month t. Following Bandi and Perron (2006), the realized (annualized) monthly volatility

measure of the futures on S&P 500 is calculated as

RVt =

√√√√ 1

Mt

Mt∑

j=1

σ2
j,RV × 252 (9)

where σj,RV is the j-th daily realized volatility on S&P 500 futures contract in month t while

Mt is the number of trading day in the month t, that is the number of trading days between the

delivery and the expiration of the option contract; RVt, then, measures the average annualized

realized volatility in month t. The daily realized volatility is calculated, following Andersen

et al. (2001b), as

σ2
j,RV =

Nj∑

k=1

r2
j,k (10)

where rj,k is the five minute return on future price, while Nj is the number of intradaily re-

turns. High frequency five minutes returns are the basis for the daily realized volatility, so that

Nj = 72.

We extend our analysis, considering the observations on VIX, hence after V IXt, implied volatil-

ity of options on S&P 500 traded at the Chicago Board Option Exchange (CBOE), from January

1990 until March 2007. The VIX is the (annualized) implied volatility of a nontraded (synthetic)

at-the-money option contract with one month to maturity. This measure is less affected by the

problems that affect standard implied volatility measures, such as the potential nonsynchronous
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measurement of option and index levels, early exercise and dividends, bid-ask spreads.

We use monthly non-overlapping observations by taking the closing value of each month, and

multiply the VIX data by a constant factor equal to
√

252
365 to account for the difference between

trading days and calendar days in a year.

Given the time series of daily spot prices of the S&P 500, we propose an alternative measure for

the monthly realized volatility that is the Realized Range, RRVt, that is defined as

RRVt =

√√√√ 1

Mt

Mt∑

j=1

σ2
j × 252 t = 1, ..., T (11)

where nt is the number of trading days in month t and

σ2
j = λ−1(Pj − pj)

2 + (oj − cj−1)
2 (12)

where λ = 4 log(2), is the Parkinson (1980) estimator of the daily volatility, that is defined as

the difference between the highest, Pj , and lowest, pj , log prices of the S&P 500 on the j − th

day of month t plus the difference between the log opening price, oj , and the log closing price,

cj−1, of the day before. Christensen and Podolskij (2007) have investigated the efficiency of

the range estimator, noting that daily range is more efficient than the daily squared returns,

corresponding to the realized volatility calculated on the basis of 2-3 hours returns.

Our dataset then includes 234 non-overlapping monthly measures of annualized realized

volatility and implied volatility on futures of S&P 500 and 207 non-overlapping monthly measures

of annualized realized range and implied volatility of spot prices of S&P 500. Figure 1 plots

the dynamic behavior of the logarithm of the series under analysis. From a visual inspection,

it appears evident that implied and realized volatility follows similar dynamic patterns, and are

linked together. In particular, we observe the contemporaneous presence of periods of high and

low volatility, a characteristic of both long memory and level shift processes. Table 1 reports

some sample statistics for IVt, RVt, V IXt and RRVt. Implied volatility is, on average, higher

than realized volatility, reflecting the possible presence of a risk premium in the determination of

option prices, see Bollerslev et al. (2009). On the other hand, realized measures are, as expected,

more volatile than implied volatility, since the latter is an expectation of the volatility during

next month. The high positive skewness is caused by the fact that volatilities are restricted to

be positive, so that we are more likely to observe positive deviations from the mean. Since the
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log of realized volatility is closer to be normal, we show the sample statistics of the logarithm

of volatility measures in table 1. As highlighted by Andersen et al. (2001a), the logarithmic

transformation reduces drastically the level of excess kurtosis and skewness is also close to 0.

For this reason, we refer to logarithm of volatility in the rest of the paper.

We first evaluate and compare the degree of fractional integration of implied and realized

volatilities. Therefore, we propose a semiparametric test on the equality of the degree of frac-

tional integration of realized and implied volatilities, applying a multivariate extension of the

exact local Whittle estimator used in a univariate setup by Shimotsu and Phillips (2005). Nielsen

and Shimotsu (2007) propose, as in Robinson and Yajima (2002), a test statistic for the equality

of integration orders that, in the bivariate case, is

T̂0 = md(Sd̂)′
(

S
1

4
D̂−1(Ĝ ⊙ Ĝ)D̂−1S′2

)−1

(Sd̂) (13)

where ⊙ denotes the Hadamard product, S = [1,−1]′, h(T ) = log(T )−k for k > 0 , D =

diag(G11, G22), while Ĝ = 1
m

∑m
j=1 Re(Ij) . The parameter vector d̂ is the exact Local Whittle

estimator of d, introduced by Shimotsu and Phillips (2005). Table 2 shows the results of the

semiparametric analysis of the fractional integration order of realized-implied volatilities. The

bandwidth parameters are T 0.7, T 0.6 and T 0.5. We notice that implied volatility presents an

higher degree of fractional integration with respect to the realized volatilities, even if the T̂0

statistic takes high values only in the case of volatilities on future contracts. Since the 95%

critical value of a χ2
1 is 3.841, we cannot reject the null of equality of the integration orders

in most cases, so that we can conclude that monthly implied and realized volatility share the

same order of fractional integration. The estimates of the fractional integration order, d, are in

all cases in the non-stationary region, but they are all inferior to the unit value. This evidence

contrasts with the findings in Andersen et al. (2001a), where realized volatility is stationary

with fractional integration order equal to 0.4. This fact is perhaps due to the aggregation of the

series over a monthly horizon, that increases the level of persistence. Granger and Hyung (2004)

point out the idea that the excess persistence in volatility series could be induced spuriously by

the presence of occasional structural breaks. For this reason, we implement the tests proposed

by Shimotsu (2006), that are based on sample splitting and d-differencing, in order to evaluate

whether long memory is a true feature of the data.5 Table 3 reports the results of the testing

5We refer to the paper by Shimotsu (2006) for a careful description of the estimation techniques.
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procedures. From table 3 is clear that tests based on sample splitting and d-differencing cannot

refuse in all cases the null hypothesis of true long memory.6. Moreover, we evaluate the presence

of long memory, according to the testing procedure outlined in Ohanissian et al. (2008), that is

based on temporal aggregation, exploiting the self-similarity of truly long memory processes. The

test strongly rejects the null of truly long memory for both realized and implied volatility. Given

these results, it is worth exploring the possibility of alternative setup for long run dependence,

as outlined in section 2.

5 Empirical results

First we implement the analysis of the cointegration regression of log RVt on log IVt, that contains

all the information available up to t, that is incorporated in the determination of the option price

at time t. In particular, we implement the FDLS analysis as outlined in section 2. Table 4 reports

the results of the cointegration analysis and confirms the findings of Bandi and Perron (2006).

The integration order of the cointegration residuals is, in most cases, non significantly different

from 0, suggesting that the stochastic trend between implied and realized volatility determines

their joint long run dynamics. Moreover, we confirm the long run unbiasedness hypothesis since,

when using FDLS, β is statistically equal to 1 and α is equal to zero.7

The analysis of fractional cointegration is done also in terms of the cointegrated system (7).8

The system is estimated without any lag of the dependent variables on the right hand side, and

results are reported in table 5. The results in terms of fractional cointegration are similar to

those obtained with the regression setup. The rank tests reject the null that the cointegration

rank is zero, so that the series are fractionally cointegrated. Interestingly, both for futures and

spot volatility, we find that b is lower than d, meaning that the cointegration residuals have

long memory. In particular, the difference d̂ − b̂ is significantly different from zero and close to

0.25, so that we can conclude that the stochastic trend between implied and realized volatility

accounts only partially in determining their common long run dynamics. Furthermore, the fact,

that operators on financial markets commit a forecast error with long memory, contrasts with

the rational expectation hypothesis, see Davidson et al. (2006).

6This evidence seems to be also confirmed by a visual inspection of the graph of the log-periodogram estimation
of d with respect to md, as suggested by Perron and Qu (2010). In fact, the pattern of the log-periodogram
estimates of d appears comparable to that of a long memory process plus level shifts, see Perron and Qu (2010,
p. 285).

7As in Bandi and Perron (2006), the confidence intervals are calculated by means of a subsampling techique.
8A lag selection procedure, based on the Schwarz Criterion, indicates that no short term dynamics have to be

included in the Johansen (2008) model, see equation 7.
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The rational expectation hypothesis, in fact, implies that ex-post and ex-ante volatilities

differ only by a random I(0) error term, that is interpreted as an idiosyncratic deviation from

the long run equilibrium implied by the cointegration relation. In this sense, deviations from

equilibrium in time t should be unpredictable based on information up to time t − 1, which

implies d = b. When b < d, the forecast error has long memory and it is affected by past forecast

errors. Therefore, operators have limited rationality, since they gradually learn to exploit the

information contained in the present and past errors. The adjustment parameters, αR and αI , are

different from zero and with the expected signs. However, αR in the future case is not significant.

In this sense, the ex-post realized volatility of future contracts leads the implied volatility toward

the long run equilibrium, and this additional information is incorporated in model (7). In

fact, all the corrections toward the long run equilibrium are done by the implied volatility,

meaning that operators on financial markets weight the present and past disposable information

to produce forecast of the future realized volatility. For what concerns the unbiasedeness of

futures contracts, β is close to theoretical value 1, that is included in the bootstrapped confidence

interval and and µ is significantly different from zero, suggesting the presence of a significant

volatility risk premium, that is relevant in the fractional cointegration relationship.

We also provide an estimate of the model (1) in Panel A of table 6, following the procedure

outlined in section 3. The probability of a level shift is around 3-4%, meaning that we should

observe an average of 6-8 shifts in the sample. The standard deviation of the level shift, ση, is

approximately 3 times larger than the standard deviation of the residuals. This finding highlights

the importance of the level shifts in accounting for the common persistence of the two series,

and reinforces the idea that the common shift process induces fractional cointegration, since the

persistence of the series is removed by a linear combination of realized and implied volatility.

Panel B reports the estimates of the common level shift model, where the short run dynamics

are described by a VAR(1) process. This setup is in accordance with the findings in Lu and

Perron (2008) and Perron and Qu (2010), that are consistent with a short memory process with

level shifts. In particular, we notice a strong reduction of the probability ν with respect to the

white noise case, so that we observe an average of 2-3 shifts in both samples. Moreover, the

standard deviation of the shifts is reduced, but it is still higher than the standard deviation

of the residuals. This suggests that, including some short run dynamics in model (1) reduces

the impact of the level shifts since the persistence of the series is partially accounted for by the

autoregressive components.
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For robustness purposes, we verify the presence of a single common level shift, allowing the

magnitudes of the shifts to be non-perfectly correlated. In particular, we modify (19), assuming

η1,t ∼ N(0, Ση) where

Σρ
η =





σ2
η ρσ2

η

ρσ2
η σ2

η




(14)

with ρ ∈ [−1, 1]. in this case, η1,t is a bivariate vector, and Σρ
η replaces Ση = σ2

ηιι
′ in the

Kalman filter. When ρ = 1, then the level shift process is exactly the same across the volatility

series. We then test for the restriction ρ = 1 by means of a Wald test. W ρ in table 6 is the

Wald test for the restriction ρ = 19. Especially when including VAR dynamics, we cannot reject

the null when we allow for short run dynamics VAR(1), so that the hypothesis of an unique

common level shift process is compatible with the data. Consistently with the estimates of model

(1), we then identify the break dates on the basis of the estimated probability ν according to

the identification procedure outlined in section 3. Figure 2 shows the volatility series with the

identified shift process based on ν̂ from Panel B of table 6. We notice that volatilities of future

contracts are characterized by 3 level shifts and are particularly high between the 1996 and 2002,

while spot volatilities are not significantly low at the beginning of the 90s. As in Lu and Perron

(2008), the point estimate imply few shifts.

Table 7 reports the parameter estimates of a VAR(1)

Xt = γ + Φ1Xt−1 + zt (15)

where Xt = [log RVt, log IVt], or Xt = [log RRVt, log V IXt], computed on the original series of

realized and implied volatility and on the series after removing the common shift process. Once

the common deterministic trend or level shift series is accounted for, implied volatility does

not contain any explanatory power for the next period realized volatility, thus confirming the

findings based on the FVECM representation. In contrast to the results of the VAR(1) on the

original series in panel A, the parameter φ12 in the panel B is no longer significant at 5%. Thus,

when the common long run dynamics are disentangled from the short run dynamics, whether

in the FVECM or level shift model, implied volatility does not retain predictive information

about future volatility. We conclude that realized volatility represents the driving force of the

9Since ρ = 1 is on the boundary of the admissible values for ρ, the Wald test at level α is compared with the
(1 − 2α)-quantile of a χ2

1
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entire system. Implied volatility adjusts to realized volatility, and it does pick up the long

run component of the latter, thus explaining the received evidence on the forecasting power of

implied volatility.

6 Simulations

Given the estimates of the FVECM and the level shift model, we run a Monte Carlo simulation

in order to evaluate the size and the power of the fractional cointegration tests in finite samples

when the data are generated by alternative data generation processes. In particular, in order to

evaluate the size of the fractional cointegration tests, we simulate pseudo data under the null of

no cointegration from the following DGPs,

• Fractional Cointegration system with α = 0:

∆dYt = ǫy
t

∆dXt = ǫx
t (16)

• Level shift with two independent shift processes, τ1
t and τ2

t :

Yt = τ1
t + ǫy

t

Xt = τ2
t + ǫx

t (17)

• Cointegration regression with no reduction of the integration order:

Xt = ∆−dut

Yt = βXt + ∆−dǫt (18)

where ǫt = (ǫy
t , ǫ

x
t ) are distributed as a bivariate normal with variance Ω̂, set at empirical

estimates that did not impose the null of no cointegration. The binomial level shift processes in

(17), say τ1 and τ2, are independent with the same probability ν, and shift variance σ2
η.

10 Note

that, given the presence of two distinct level shift processes in (17), the resulting series are no

more fractionally cointegrated; in fact, any linear combination between yt and xt will not result

10The pseudo series are simulated according to the estimates for the implied and realized volatility obtained in
section 4.
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in a I(0) process, except in the case where τ1 = τ2 that happens with probability 0.

Table 8 reports the empirical size of the cointegration tests for 1000 Monte Carlo replications.

We notice that, when the data are generated according to models (16) and (18) the λmax test

is not distorted, while the t−test based on the cointegration regression overrejects the null.

On the other hand, we notice that the empirical size of the cointegration tests, when data

are generated according to a bivariate independent level shift process, is upwardly biased, in

particular when implementing the test on the cointegration rank. The empirical rejection rate

increases dramatically when adding VAR(1) dynamics, so that we clearly address this high

distortion to the VAR component, that dominates the dynamics of the system. We conclude

that, when the true process is a highly persistent VAR(1)11 and the errors are correlated, the

usual cointegration tests indicate the presence of cointegration even when it is not there. For a

related point in a situation without level shifts, Gonzalo and Lee (1998) found that a persistent

VAR(1) creates the false impression of long memory.

The power of the cointegration tests is evaluated simulating according to the bivariate ran-

dom level shift (1) with a common shift process and to the FVECM model (7). The parameters

used in the simulation are those estimated in section 4. Table 9 reports the percentage rejection

of the null given that the null is false. The rejection rate is generally very high under both the

simulation schemes. This shows that findings of fractional cointegration may be accounted for

by common level shifts, since the null of absence of fractional cointegration is rejected in most

cases, even if the data are generated according to a common level shift process. Moreover, we

evaluate the power of the test for alternative values of α and ση, see table 10. The power of the

regression based test decreases faster than that of the rank test when reducing the value of the

parameters α1 and α2 in the FVECM setup. Similar results are obtained when simulating under

the level shift model, reducing the variance of the shifts. Given the results of this Monte Carlo

experiment, we conclude that the rank test based on FVECM representation correctly detect

fractional cointegration when data are generated under FVECM or according to a cointegration

regression setup. The parametric rank test is highly size distorted when the true DGP is a com-

mon level shift process. Finally, the rejection rate of the rank test is very high under common

level shifts, so that findings of persistence in volatility and fractional cointegration may be due

to common level shifts.

11In this case, one of the eigenvalues of the autoregressive matrix is close to 1
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7 Conclusions

We consider the possibility that the observed persistence of realized and implied volatility, and

the strong relation between the two, is due to a common level shift process. We carry out a

new multivariate estimation technique, so that we obtain the probability of the occurrence of

a common level shift and its standard deviation. We find that shifts are very likely to happen,

and their standard deviation accounts for the overall variance of the series and their persistence.

Once the underlying common feature is removed, implied volatility does not have any predictive

power for realized volatility. This evidence is in accordance with the findings obtained in the

fractional cointegration framework and provides additional insights on the information content

of option prices. Essentially, realized volatility drives the dynamics of the system, and implied

volatility adjusts to realized volatility, picking up the long run component and acting as an

efficient forecast. In a Monte Carlo setup, we show that the usual fractional cointegration tests

display high probabilities of detecting fractional cointegration when the true DGP is a common

level shift model. Thus, the empirical evidence that has been interpreted as long memory in

volatility and fractional cointegration is accounted for by our common level shift model.

A Common shifts estimation method

The model 1 is then written in a state-space form, where the innovations to the common shift

component τt are distributed according to a mixture of normal distributions

δt = πtη1t + (1 − πt)η2t (19)

where ηk,t ∼ iid N(0, σ2
ηk

). In order to recover model (1), we set σ2
η1

= σ2
η and σ2

η2
= 0, and

rewrite in terms of first differences

∆yt = ct − ct−1 + ιδt (20)

or in the corresponding state-space form

∆yt = HXt + ιδt (21)

Xt = FXt−1 + Ut (22)
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where ι is a 2 × 1 vector of ones, H is a 2 × 4 matrix, whose rows select the elements of Xt, so

that H1 = [1, 0,−1, 0] and H2 = [0, 1, 0,−1]. Xt is a 4 × 1 vector that stacks the state variable

ck,t in a column vector so that Xt = [c1,t, c2,t, c1,t−1, c2,t−1]. The transition matrix in the state

equation, F , is a 4 × 4 block matrix of zeros, where the lower extra diagonal block is a 2 × 2

identity matrix, while Ut is a 4 × 1 vector of innovations Ut = [c1,t, c2,t, 0, 0] with a 4 × 4 block

diagonal variance and covariance matrix Q of zeros, with the upper 2 × 2 diagonal block equal

to Σ. Considering a VAR(1) specification for the short run dynamics, we simply have to impose

a transition matrix of the form

Fi =





φ11 φ12 0 0

φ21 φ22 0 0

1 0 0 0

0 1 0 0





i = 1, 2 (23)

The state-space model is estimated with the Kalman-filter technique, that is used to generate

the log-likelihood function, given the realization of the latent state variable. The estimation

procedure extends the Lu and Perron (2008) to the bivariate case, so that we remand the reader

to their paper12. In the multivariate case outlined above, the conditional Gaussian likelihood

function of ∆yt is equal to

f(∆yt|st−1 = i, st = j, Yt−1; θ) =
1

2π
|f (k,j)

t |− 1

2 exp

{
−v

(ij)
t (f

(i,j)
t )−1v

(ij)
t

2

}
(24)

where st = 1 when πt = 1, so that a level shift occurs, and i and j may assume both 0 and

1 value. v
(ij)
i,t = ∆yt − ∆y

(i)
t|t−1 is the prediction error, while f

(k,j)
t = E[v

(ij)
t v

(ij′)
t ] is the 2 × 2

prediction error variance. The prediction error is calculated as the difference between ∆yt and

HXi,t|t−1 that is the best forecast of the state variable conditional on all the information at time

t − 1,

Xt|t−1 = FXi
t−1|t−1 (25)

with associated variance

Pt|t−1 = FP i
t−1|t−1F

′ + Q (26)

12We maintain the notation as close as possible to Lu and Perron (2008)
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so that

f
(i,j)
t = HP i

t−1|t−1H
′ + Rj (27)

where Rj = σ2
ηιι

′ = Ση with probability ν, and Rj = 0 with probability 1−ν. The log likelihood

function is then defined as

ln(L) =
T∑

t=1

f(∆yt|Yt−1; θ) (28)

with

f(∆yt|Yt−1; θ) =
1∑

k=0

1∑

j=0

f(∆yt|st−1 = k, st = j, Yt−1; θ)Pr(st−1 = k, st = j, Yt−1; θ)

≡ 1(ξ̂t|t−1 ⊙ ωt) (29)

where ξ̂t|t−1 is a 4 × 1 vector of conditional probabilities, whose (i, j) elements are Pr(st−1 =

k, st = j, Yt−1; θ), while ωt is the 4 × 1 vector of the conditional densities f(∆yt|st−1 = k, st =

j, Yt−1; θ). The evolution of ξ̂t|t−1 is given by





ξ̂11
t+1|t

ξ̂01
t+1|t

ξ̂10
t+1|t

ξ̂00
t+1|t





=





ν ν 0 0

0 0 ν ν

(1 − ν) (1 − ν) 0 0

0 0 (1 − ν) (1 − ν)









ξ̂11
t|t

ξ̂01
t|t

ξ̂10
t|t

ξ̂00
t|t





(30)

or more compactly

ξ̂t+1|t = Πξ̂t|t (31)

where ξ̂t|t is given by

ξ̂t|t =
(ξ̂t|t−1 ⊙ ωt)

1(ξ̂t|t−1 ⊙ ωt)
(32)

while the update for the state variable is given by

Xij

t|t = Xi
t|t−1 + P i

t|t−1H
′(HP i

t|t−1H
′ + Rj)

−1(∆yt − HXi
t|t−1) (33)

and its conditional variance

P ij

t|t = P i
t|t−1 − P i

t|t−1H
′(HP i

t|t−1H
′ + Rj)

−1HP i
t|t−1 (34)
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so that

Xj

t|t =

∑1
i=0 ξ̂ij

t|tX
ij

t|t∑1
i=0 ξ̂ij

t|t

(35)

and, finally

P j

t|t =

∑1
i=0 ξ̂ij

t|t

[
P ij

t|t +
(
Xj

t|t − Xij

t|t

)(
Xj

t|t − Xij

t|t

)′]

∑1
i=0 ξ̂ij

t|t

(36)

B Frequency domain least squares

Robinson and Marinucci (2003) and Marinucci and Robinson (2001) show that these semipara-

metric estimators are consistent for general orders of fractional integration d for the individual

series and d− b for the errors in the cointegrating relation and for arbitrary short run dynamics.

Define the discrete Fourier transform of an observed vector {at, t = 1, . . . , T}

wa(λ) =
1√
2πT

T∑

t=1

ate
itλ.

If {bt, t = 1, . . . , T} is an another observed vector, the cross periodogram matrix between at and

bt is

Iab(λ) = wa(λ)w∗
b (λ) = Ic

ab(λ) + iIq
ab(λ)

where the asterisk is the transposed complex conjugation, and c, q indicate the co- and quadra-

ture periodogram, respectively. The discretely averaged co-periodogram is

F̂ab(k, l) =
2π

T

l∑

j=k

Ic
ab(λj), 1 ≤ k ≤ l ≤ T − 1

for λj = 2πj/T . Thus we obtain the frequency domain least squares estimator

β̂m = F̂−1
xx (1, m)F̂xy(1, m) (37)

of β in regression (5). If

1

m
+

m

T
→ 0 as T → ∞ (38)
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then β̂m is called a narrow-band FDLS estimator, since it uses only a degenerating band of

frequencies around the origin. Robinson and Marinucci (2003) show that

β̂m − β = Op

((
T

m

)−b
)

, as T → ∞.

Under fractional cointegration de < min(di), so the estimator β̂m are consistent for β. Moreover,

if the integration order of the raw data series is common, the stochastic order of magnitude of

the estimator varies with the strength of the cointegrating relation b.

Christensen and Nielsen (2006) have derived the asymptotic distribution of β̂m when 0 < d < 1
2

and 0 < b ≤ d. In particular, in the simple case of two variables, this is find to be equal to

√
mλb

m(β̂m − β) → N

(
0,

ge(1 − 2dx)2

2gx(1 − 2dx − 2de)

)
(39)

where ge and gx correspond to var(∆bet) and var(∆dxt).

C FVECM estimation method

Define Z0,t = ∆dXt and Z1,t = (∆d−b − ∆d)Xt and Zk,t = ∆dLk
bXt for k = 1, ..., K, and the

system (7) can be written as

Z0,t = αβ′Z1,t + ΓZk,t + ǫt (40)

where Γ = (Γ1, ...,Γk−1). so that the residual of the regression of Z0,t and Z1,t on Zk,t can be

defined as

Ri,t = Zi,t − MikM
−1
kk Zk,t i = 0, 1 (41)

so that we get the residual sum of squares

Sij = Mij − MikM
−1
kk Mkj (42)

where Sij depends on d and b. For fixed d, b, α and β, Γ is defined as

Γ(d, b, α, β) = (M0k − αβ′M1k)M
−1
kk (43)
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For fixed d, b and β, α is estimated as

α̂(d, b, β) = S01β(β′S11β)−1 (44)

and

Ω̂(d, b, β) = S00 − α̂(β′S11β)α̂′ (45)

Plugging this estimates into the likelihood we get

L(d, b, α̂, β, Ω̂) = |S00 − S01β(β′S11β)−1β′S10| (46)

that is maximized by the eigenvector corresponding to the r maximum eigenvalues that solve

the problem

|λS11 − S10S
−1
00 S01| = 0 (47)

The vector β is estimated as the r-dimensional space spanned by the eigenvectors, vj for j =

1, ..., r, corresponding to the r largest eigenvalues of S−1
11 S10S

−1
00 S01.

Given this choice of β, the likelihood function is maximized only with respect to d and b, that is

(d̂, b̂) = argd,b max L(d, b) (48)

where

LT (d, b) =

[
|S00|

r∏

i=1

(1 − λi)

]−T
2

(49)

Once d and b are estimated, as the values that maximize the function L(b, d), all the other

parameter of model (7) are obtained as functions of d̂ and b̂.

Given the equality of integration orders, the presence of fractional cointegration in the FVECM is

tested carrying out as a likelihood ratio test similar to that presented in Lasak (2009) for the case

d = 1. This test extends, to the fractional cointegration case, the well-known Johansen (1991)

test for the cointegration rank. In particular, we consider the so called maximum eigenvalue
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statistic to test the hypothesis of reduced rank of the matrix Π = αβ′

H0 : rank(Π) = r0 = 0 (50)

H1 : rank(Π) = r1 = 1 (51)

(52)

where rank(Π) = 1 implies that Π can be decomposed into αβ′. The maximum eigenvalue

statistic, sup λmax, is defined as

sup λmax = LR[0|1] = −T ln[1 − λ1(d̂, b̂)] (53)

where d̂ and b̂ are the parameter that maximize the profile likelihood in equation (49) under the

hypothesis of rank 1.
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Mean Std. Dev. Skewness Exc.Kurtosis

IVt 0.1632 0.0573 1.1417 1.9716
RVt 0.1406 0.0644 1.6129 2.8787
log IVt -1.8683 0.3314 0.2890 -0.5454
log RVt -2.0474 0.4011 0.5590 -0.0990

V IXt 0.1573 0.0534 0.9893 0.9652
RRVt 0.1261 0.0556 1.4617 2.3398
log V IXt -1.9023 0.3218 0.3197 -0.7598
log RRVt -2.1524 0.3951 0.4772 -0.2837

Table 1: Sample statistics for the implied and realized volatilities.

Futures

md = T 0.7 = 45 md = T 0.6 = 26 md = T 0.5 = 15

d̂IV 0.7168 0.7576 0.7574
(0.0745) (0.0980) (0.1265)

d̂RV 0.5616 0.5753 0.6931
(0.0745) (0.0980) (0.1265)

T̂0 3.1749 2.8628 0.5508
Spot

md = T 0.7 = 41 md = T 0.6 = 24 md = T 0.5 = 14

d̂V IX 0.6515 0.6515 0.9155
(0.0781) (0.1002) (0.1336)

d̂RRV 0.5532 0.5750 0.7134
(0.0781) (0.1002) (0.1336)

T̂0 0.9184 1.2419 2.1657

Table 2: Fractional integration estimation with exact local Whittle estimator (standard error in
parenthesis). The T̂0 test statistic is calculated with h(T ) = log(T ).
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log RVt log RRVt

Split 0.0924 0.1622
d-diff -1.9428 -1.1013

log IVt log V IXt

Split 0.4077 0.8554
d-diff -1.2800 -1.4064

Table 3: Tests for truly vs spurious long memory. Split is the p-value of the Shimotsu (2006)
based on sample splitting. d-diff is the value of the Shimotsu (2006) test based on d-differencing
and the KPSS test. All tests are based on md = T 0.6 as a choice of the bandwidth for the
estimation of the fractional integration order.

(a) log RV t = α + β log IV t + et

Bandwidth α̂m β̂m d̂e

m = 20 −0.0478 1.0700 0.1897 (0.0980)
(−0.3058, 0.4329) (0.9284, 1.3405)

m = 15 −0.0530 1.0672 0.1889 (0.0980)
(−0.3125, 0.5127) (0.9067, 1.3750)

m = 9 −0.0125 1.0888 0.1951∗ (0.0980)
(−0.4367, 0.4551) (0.8285, 1.3520)

m = 6 −0.0046 1.0931 0.1964∗ (0.0980)
(−0.4763, 0.5075) (0.8411, 1.4002)

(b) log RRV t = α + β log V IXt + ut

Bandwidth α̂m β̂m d̂u

m = 20 −0.0632 1.0999 0.0161 (0.1002)
(−0.4331, 0.2261) (0.8923, 1.2426)

m = 15 −0.0136 1.1260 0.0582 (0.1002)
(−0.4965, 0.2605) (0.758, 1.2630)

m = 9 −0.0300 1.1173 0.0464 (0.1002)
(−1.0051, 0.4133) (0.4800.3510)

m = 6 −0.0196 1.1228 0.0541 (0.1002)
(−1.2890, 0.6742) (0.2784, 1.5183)

Table 4: Fractional Cointegration Analysis: Panel (a) reports the results of the FDLS procedure
in the case of future contracts, while Panel (b) reports the results of the FDLS procedure in the
case of spot contracts. In round brackets the 95% confidence intervals based on subsampling
with size [n

2

3 ]
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Figure 1: Monthly realized-implied volatility measures: Panel (a) reports the series of log-volatility of the future contracts on S&P from 4/1988 to
10/2007, Panel (b) reports the series of log-volatility of the spot contracts on S&P from 1/1990 to 3/2007
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Figure 2: Estimated shift processes: Panel (a) reports the identifies shifts on the log-volatilities, while panel (b) show the consequences of the
selected break dates on the original volatility series.
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FUTURES SPOT

V alue Q5 Q95 V alue Q5 Q95

d̂ 0.8047 0.7318 0.9354 0.8985 0.8147 1.0061

b̂ 0.4910 0.3267 0.7959 0.6116 0.3253 0.8717

β̂ −1.0227 −1.1120 −0.9479 −0.9976 −1.0663 −0.8676

α̂R −0.2447 −0.5694 0.0684 −0.4108 −0.8223 −0.1641

α̂I 1.0384 0.6034 1.5554 0.8012 0.5303 1.4094

µ̂ 0.0803 −0.0589 0.2205 0.2276 0.0043 0.5054

λ̂max 150.47 – 15.756 150.833 – 22.4168

Table 5: Estimation Results of model 7 with intercept, µ, in the cointegration relation. Table
reports the estimated parameter value and the 5th and 95th bootstrapped quantiles, Q5 and Q95.
Table reports also the value of the maximum eigenvalue statistic sup λmax for r0 = 0 with the
corresponding bootstrapped 95th quantile under H0
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(a)

FUTURES SPOT

V alue p-val V alue p-val

ν̂ 0.0340 0.0000 0.0447 0.0000
σ̂η 0.5619 0.0165 0.4416 0.0006
σ̂RV

ǫ 0.2422 0.0000 0.2372 0.0000
σ̂IV

ǫ 0.1411 0.0000 0.1343 0.0000

σ̂RV,IV
ǫ 0.0970 0.0000 0.0595 0.0000

W ρ 2.7826 0.0476 2.7615 0.0483

(b)

FUTURES SPOT

V alue p-val V alue p-val

ν̂ 0.0111 0.0000 0.0089 0.0000
σ̂η 0.3952 0.0632 0.3977 0.0979
σ̂RV

ǫ 0.2517 0.0000 0.2323 0.0000
σ̂IV

ǫ 0.1334 0.0000 0.1071 0.0000

σ̂RV,IV
ǫ 0.1293 0.0000 0.0760 0.0000

φ11 0.6943 0.0000 0.6469 0.0000
φ12 0.2150 0.0286 0.3369 0.0001
φ21 0.4736 0.0000 0.4651 0.0000
φ22 0.3708 0.0000 0.4351 0.0000
W ρ 0.0120 0.4565 0.2138 0.3219

Table 6: Estimation Results: Bivariate Random Shift Model. Panel (a) reports the results of
the common shift model without lags, while Panel (b) presents the estimation results when we
allow for VAR dynamics in the short term component.
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(a)

FUTURES SPOT

V alue p-val V alue p-val

γ1 -0.3730 0.0001 -0.3113 0.0022
φ11 0.6477 0.0000 0.6265 0.0000
φ12 0.1873 0.0392 0.2597 0.0043
γ2 -0.2044 0.0001 -0.1141 0.0341
φ21 0.4478 0.0000 0.4505 0.0000
φ22 0.4009 0.0000 0.4305 0.0000

(b)

FUTURES SPOT

V alue p-val V alue p-val

γ1 -0.0418 0.0000 -0.0765 0.0051
φ11 0.5416 0.0000 0.5563 0.0000
φ12 0.0004 0.9964 0.1577 0.0747
γ2 0.0904 0.0000 0.1214 0.0000
φ21 0.3741 0.0000 0.4294 0.0000
φ22 0.3537 0.0000 0.4540 0.0000

Table 7: VAR dynamics. Panel (a) reports the estimated parameters of a VAR(1) on the original
series, while Panel (b) presents the estimation results of a VAR(1) on the detrended series.

FUTURES SPOT
t(dy−dǫ) λmax > λ∗

max t(dy−dǫ) λmax > λ∗
max

FVECM (α1, α2) = 0 6.4 5.0 4.4 4.3
REGRESSION 7.8 4.4 7.9 5.3
LEVEL SHIFTS 5.0 74.0 3.5 70.2
LEVEL SHIFTS + VAR 99.6 100 99.9 100
VAR 100 100 100 100

Table 8: Percentage of rejections by regression and sup maximum eigenvalue tests under the
null hypothesis of no cointegration and no common shifts. Nominal size 5%

36



FUTURES SPOT
t(dy−dǫ) λmax > λ∗

max t(dy−dǫ) λmax > λ∗
max

FVECM (α1, α2) = 0 96.6 100 95.8 100
LEVEL SHIFTS 98.8 99.3 99.6 99.9
LEVEL SHIFTS + VAR 99.7 100 100 100
VAR 99 100 100 100

Table 9: Percentage of rejections by regression and sup maximum eigenvalue tests of the null under fractional cointegration
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t(dy−dǫ) λmax > λ∗
max t(dy−dǫ) λmax > λ∗

max

α/2 85.5 99.6 ση/2 85.0 99.5
α/4 49.5 86.1 ση/4 50.6 77.5
α/6 35.7 53.9 ση/6 30.6 44.7
α/8 25.8 31.3 ση/8 22.8 29.0
α/10 21.3 22.7 ση/10 18.4 19.0

Table 10: Percentage of rejections by regression and sup maximum eigenvalue tests of the null under fractional cointegration for different values of
α and ση
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