Side Channel Security of Smart Meter Data
Compression Techniques

Marcell Fehér!, Niloofar Yazdani?, Diego F. Aranha!, Daniel E. Lucani!
Morten Tranberg Hansen?, Flemming Enevold Vester?,
1Agile Cloud Lab, Department of Engineering, DIGIT, Aarhus University, Aarhus, Denmark
2 Kamstrup A/S, Skanderborg, Denmark
{swOrdf1sh,n.yazdani,dfaranha,daniel.lucani } @eng.au.dk, {mtr,flev} @kamstrup.com

Abstract—Given the large and sustained growth in the num-
ber of smart meters for different applications, e.g., electricity,
water, heat, effective data compression has become increasingly
important. Although smart meters tend to encrypt payloads
using state-of-the-art solutions, the packet length variability
introduced by compression of the data can be exploited in a
side channel attack to gain knowledge about the consumption
of individual meters. In a nutshell, a meter reporting zero
(or constant) consumption can be compressed more than one
reporting more erratic consumption. An attacker may gain
knowledge of behavioral patterns of a household, e.g., when is
no one home, or company, e.g., active periods of production.
This paper analyzes the correlation between packet length and
reported consumption of several signals and practical reporting
periods for the DLMS standard using real (anonymized) smart
meter measurements. We consider various built-in compressors
and also propose new techniques that can both increase the
compression and reduce this correlation. Our proposed schemes
are particularly well suited for the increasingly popular case of
high frequency reporting, e.g., reporting each measurement as
it becomes available.

Index Terms—compression, DLMS, IoT, generalized dedupli-
cation, smart meters, side channel, information leak

I. INTRODUCTION

In the last decade most utility providers have changed the
way they collect consumption data from infrequent manual
readings to automatic upload using Smart Meters. Installing
these connected devices to residential and industrial cus-
tomers allows the provider to monitor usage at a much finer
granularity and receive frequent readings. The opportunities
enabled by this high detailed information are game-changing:
providers can get feedback on the quality of their service in-
cluding near real time alerts on anomalies and power outages,
as well as drastically improved fraud detection and demand
forecasting, just to name a few.

These new business advantages come at a price. Providers
now have to manage thousands to millions of Smart Meters,
provide adequate upload bandwidth and collect, store and
analyze the received data. To reduce the size of readings,
the protocol supports data compression. Since the meters are
usually connected via a low-bitrate technology like 2G cellular
network, savings add up to a tremendous amount for the whole
fleet, and providers can rarely afford to turn compression off.
Although the protocol includes adequate encryption, some
of the compressors are found to leak information via a side
channel. When an external actor is able to observe the size

of uploaded data packets of readings, they might be able to
infer information about the consumption.

In this paper we analyze the correlation of measured
consumption and the size of compressed readings data packets
under different conditions. We later propose three new com-
pression techniques that provide a better trade-off between pri-
vacy and bandwidth savings than the built-in DLMS/COSEM
Null and Delta compression schemes. The rest of the paper
is organized as follows. After giving an overview of recent
efforts to preserve privacy of Smart Meter data in Section II,
we introduce the readings transfer protocol, its implications
on uncompressed packet size, and discuss the built-in Null
and Delta compression schemes in Section III. Section IV
describes the novel compression techniques we are proposing
to mitigate, and in some cases eliminate the information leak.
Section V shows the analysis of all discussed compressors,
and Section VI draws the conclusions.

II. RELATED WORK

Data collected by smart meters can be used to violate
user privacy, e.g., by revealing sensitive energy consumption
patterns that can indicate household occupancy at different
times in the day or even economic status of its inhabitants. A
recent survey [1] explores legal issues, notions of privacy and
requirements for privacy-preserving smart meter data collec-
tion, management and processing. Two main threat models are
considered: (i) the trusted operator model, in which data is
collected and stored in a centralized information infrastructure
(Meter Data Management System — MDMS) managed by
the operator, who is trusted; (ii) the non-trusted operator
model, in which the service provider and collaborators with
access to the data can behave adversarially. The first model is
fundamentally weaker, and forces adversaries to infer private
information from external sources such as observable network
traffic, tampered smart meters or compromised infrastructure.
However, it captures currently deployed infrastructures and
simplifies billing, since the operator has access to consump-
tion information in plaintext. The latter model captures the
complexity of modern energy ecosystems, but complicates
operational aspects. The authors also make a distinction
between cryptographic privacy, where privacy mechanisms
are enforced by cryptographic techniques that limit what can
be learned from smart meter data; and statistical privacy
which limits what can be inferred about an individual who
contributes sensitive information to a larger data set.

In terms of cryptographic privacy, most of the solutions
for smart metering privacy in the trusted operator model are
concentrated in applications of homomorphic encryption [2]—
[4]. In such cryptosystems, operations performed over data
encrypted under the same public key correspond to closely-
related operations performed over the underlying plaintexts.
The biggest advantage of such solutions is that data utility
is preserved, with the downside of a non-trivial performance
penalty due to computationally intensive public-key cryptog-
raphy operations. Privacy in the non-trusted operator model
can be obtained by aggregating data among meters before
delivery, which may create scalability issues and resilience
problems in case of failure [5]. Moreover, a third party is
necessary for distributing secrets beforehand.

Statistically privacy techniques attempt to hide data pat-
terns, compromising some of the data utility. The simplest
proposal in this class is to employ rechargeable batteries [6],
[7] which physically introduce noise as an increase or decrease
in consumption, and limit the possibility of load monitoring at
a non-trivial (environmental) cost. Sankar et al. [8] proposes
a theoretical framework based on mutual information as a pri-
vacy metric, where utility is estimated by a mean-square error
distance metric. A major shortcoming shared by these works
is their lack of formal guarantees in terms of a proper privacy-
accuracy tradeoff, relying on heuristic analysis instead. The
differential privacy definition solves this concern by providing
quantitative methods to formally assess the privacy loss of
contributing to a data set. Differentially private solutions
represent the state of the art in the non-trusted operator
model [9], but incur increases in bandwidth consumption to
hide periods of low demand, and might marginally penalize
consumers due to lower accuracy.

We further note that the cryptographic and statistical privacy
notions are complementary, and must be addressed jointly.
Cryptographic mechanisms can still leak side-channel infor-
mation [10], and statistical methods might reveal too much
information with consecutive queries. In that sense, data
confidentiality becomes a challenge, as pointed out in [1]:
“An interesting related issue is whether data access patterns
at the MDMS or communication patterns between a meter and
the MDMS could reveal private information about a consumer
even if the data are encrypted. We are not aware of a reported
privacy breach of this kind (...)”. Our paper discusses exactly
this problem in the context of smart meter data compression
methods assuming encrypted communication, and appears to
be the first to address it in a realistic setting.

III. MOTIVATION

The de-facto protocol for information exchange between
Smart Meters and the Head End System (HES, the back-end
system that manages the meters) is called Device Language
Message Specification (DLMS). The utility provider can
create so-called Load Profiles, which define what quantities
should be measured by the meters at what time intervals
(typically 15 minutes), and the trigger condition(s) when
the collected readings should be uploaded. Usually there are

multiple profiles active at the same time, allowing the provider
to monitor different qualities of the service at different rates,
or instruct the meter to upload a very detailed timeline of
events that happened just before an anomaly.

The DLMS protocol also includes a message format which
meters must use when compiling a number of readings into a
data packet called an Application Data Unit (APDU). The
vendor of the Smart Meter system or the utility provider
using it is allowed to customize the message format, and
add or remove components of APDUs as they wish. The
real life dataset we analyze in this paper has been provided
by Kamstrup A/S, a major Smart Meter manufacturer, who
has extended the standard APDU format with a header that
describes the Load Profile which the APDU belongs to. This
makes the packets self describing, simplifying the process in
the HES to identify and categorize them quickly.

When an APDU is constructed by a meter, the DLMS
protocol dictates that every reading is encoded to a fixed
length segment in the binary data packet. Since the header
is also the same for each message of the same Load Profile,
the total size of uncompressed APDUs is constant. This is
excellent for user privacy, since the APDU size does not reveal
anything about the values reported in it, but requires a lot of
bandwidth. To help this problem, DLMS includes a number
of data compression options.

The Null Data compression scheme replaces values with
a null marker byte if it is identical or predictable from the
previous record. For example, if the timestamp is increased at
a constant rate between data records, only the first reading
will include the full 14-byte value. Every other will only
have a single-byte null marker. Similarly, when the power
consumption does not change between measurements, Null
Data replaces the full values with one byte. This makes the
compressed APDU size highly dependent on the underlying
compression readings, leading to compromised user privacy.

A different method, Delta Array compression aims to
reduce APDU size by decreasing the number of bytes for
values that can be represented shorter than the data type would
prescribe. For example, the default data type for active energy
takes 4 bytes. If the actual value in a particular measurement
fits into a single byte, the Delta Array compressor changes the
type code preceding the value in order to use only one byte to
encode the measurement, thus, saving three bytes. While Null
Data causes the compressed APDU size to change every time
consecutive readings of a quantity are identical, Delta Array
signals more significant changes in the consumption, when
the latter value cannot be represented at the same length.

IV. PROPOSED COMPRESSION SCHEMES

As either alternatives or additives to the built-in methods,
we propose three new compression schemes that strike a good
balance between size reduction and privacy protection. All of
them can be applied to the transferred APDUs transparently
for the existing meter and HES software components, since
the compressor works on the output APDUs of the meter and

0F000000 00000208 01080204 12002809 06008119 0900FFOF 02120000 02041200 03090601 01010800 FFOF0312 00000204

12000309 06010102 0800FFOF 03120000 02041200 03090601 01030800 FFOF0312 000! 9 06010104 0B0OFFOF

03120000 02041200 07090601 01630100 FFOF0412 00000204 12000709 06010163 010: 0 02041200 07090601

01630100 FFOF0212 00000202 OF01161E 02020F01 161E0202 OFO11620 02020F01 162006 0801 08020412 00070906

01016301 0OFFOFED 12000002 04 09060001 010000FF 0F021200 00020412 000709 1 00FFOFFF 12000002

04120007 09060101 630100FF OF

0003 09060101 020800FF

00 00020412 00030906 01010108 OOFFOF02 120000
0F021200 00020412 00030906 01010308 OOFFOF02 12000002 04120003 09060101 040800FF 0F021200 000104 0000

3516 0077010F 00040F00 00800001 1200080¢ 00000000 0G00COBB 420GF47D 0142

O0AC74106 6D673642 0

003517 007701 OF00041E 00008000 01120008 05000000 000600CO BBA420GF4 7D01420¢ 3DOACTAL 0G6D6736 42

00003518
000035 19,

0077 010F0004 2D000080 00011200 08050000 00000500 COBB4205 F47D0142 0G3DOACT 41066D67 3642
00 77010F00 05000000 80000112 00080500 0000000¢ 00COBB42 0:F47DO1 42053DOA CT41056D 673642

Fig. 1: An example APDU that consists of four readings of
four quantities. Total size: 527B, header (blue): 331B (63%),
type codes (orange): 44B (8%), data (black): 152B (29%).

Input data chunks Standard Generalized
Deduplication Deduplication
\ A \ | ---------- A\ Base, |A,|
]
I e
e | L& | [Base |a]
L s | L& 1 i

Fig. 2: Standard and Generalized Deduplication

the decompressor losslessly reconstructs the original APDU
before the HES receives it.

A. Header Hash Replacement

The header that makes APDUs self describing and the HES
simpler is relatively large if there’s a small number of readings
being transmitted in a message. For a Load Profile that
measures four quantities produces a 527-byte uncompressed
APDU when only four readings are encoded together, out of
which only 152 bytes contain the actual measured values, the
rest is the header (331B) and the type information (44B), as
illustrated by Fig 1.

Since the header is constant for each Load Profile, it is
not necessary to send it with every message. Instead, we
propose replacing it with its hash digest. The decompressor
would simply read the hash value, look up the corresponding
Load Profile from a dictionary and inject it to the APDU
before forwarding it to the Head End System. The size of this
lookup table stays under 360 kB even if we assume a relatively
large number of 1000 different Load Profiles, and SHA-256, a
secure hash function. When used with uncompressed APDUs
this technique preserves user privacy completely as it produces
constant-size APDUs. This is due to the fact that the fixed
size header is replaced by a fixed-size hash, which does not
reveal any information about consumption to an observer. The
achieved compression varies widely, e.g., from 86 to 11%,
depending on the number of readings in an APDU (min: 1,
max: 48) and checksum used (min: CRC32, max: SHA-256).

B. Generalized Deduplication-based Schemes

Deduplication is a well-known compression technique,
which eliminates identical chunks in the input data. Recently
a new, more general variant of the traditonal method has
been introduced [11], which is able to compress not only
identical but also similar data chunks. The key idea of the

Bases Deviations Bases Deviations

b0 do > b0 [do’]

A b1 dl [b1 [@1]

Compressed
APDU

APDU > b0 @ N o [e2] —) r
GDD transform. b3 (EEN Eliminate S N 5
function b3 d4 repeating bases 3]

Fig. 3: Block compressor using Generalized Deduplication

Bases table

hash — base, ctr
hash — base, ctr
hash — base, ctr

Bases Deviations L Bases

Deviations

Vamm W [@] S —— Compressed
CrR—] — — p
APDU —> b0 a2 > o [d2] >

Eliminate LB][&]
repeating bases B[]
within or between

APDUs

GDD transform b3 &
function b3 d4

Fig. 4: Stream compressor using Generalized Deduplication

new technique called Generalized Deduplication (GD) is to
decompose each data chunk to a pair of basis and a small
deviation in a way that 1) the original data chunk can be
reconstructed perfectly, and 2) similar chunks are mapped
to the same basis (See Fig 2). The core of this technique
is the transformation function that converts a data chunk
to a basis-deviation pair during the compression phase, and
reconstructs the original chunk from the pair in the decom-
pressor. Error correcting codes like Hamming and Reed-
Solomon have shown promising results with [oT data, and new
algorithms are also being designed specifically for GD. Based
on the concept of Generalized Deduplication, we propose two
concrete compression schemes for DLMS APDUs.

Block Compression with GD: First, we propose using
Generalized Deduplication to compress each APDU indepen-
dently. This simple algorithm converts chunks of an APDU
to a series of base-deviation pairs, and replaces the repeating
bases by the index of the first chunk where they appeared
(see Fig 3) while preserving the ordering of chunks. The
decompressor finds the referenced base by chunk index, and
passes each base-deviation pair to the inverse transformation
function, which reconstructs the original data chunk. Due to
the simplicity of this technique, both the compressor in the
Smart Meter and decompressor in the HES are fast and require
very low amount of memory.

Stream Compression with GD: Since there is a lot of
similiarity between readings across APDUs, we can reduce
transfer size even further by leveraging information that has
been sent previously. The GD-based stream compressor does
exactly that, as an extension to the block mode. When it
encounters a base that is new in the current APDU but has
already been sent in a previous one, it replaces the base
with its hash digest (see Fig 4). Using hash to identify bases
instead a numeric index serves two purposes. First, since
Smart Meters do not stop sending readings for a very long
time, the number of unique bases in the total lifetime of
the stream may grow very high, requiring a long data type
for these cross-APDU base indexes from the very beginning.
Second, since hashes identify APDUs across multiple Meters,
the decompressor at the Head End System can use a single

lookup table of hashes and bases for all meters. If we would
be using numeric indexing, the decompressor would have to
keep track of the indexes separately for each meter.

V. EVALUATION
A. Evaluation metrics

The aim of our paper is to analyze different APDU com-
pression schemes in terms of compression ratio and amount of
information leaked by the packet size. We consider a passive
attacker who can observe compressed APDUs when they are
uploaded from Smart Meters to the Head End System, but
cannot decrypt and decompress them, or alter the contents
of the messages. The attacker is assumed to know that the
APDUs contain measurements of additive units like kilowatt-
hour (kWh), where the consumption of a time period can be
obtained by subtracting the measured value at the beginning
from the value at the end of the time window.

Compression ratio: The compression ratio is calculated
by dividing the compressed APDU size by the original size.
Accordingly, compression ratio ranges from 0 to 1 where
higher values are better.

Information leakage: The purpose is to measure how much
information about electricity consumption could be revealed
by observing the compressed APDU sizes. To this end, we
calculate the multiple correlation coefficient between the mea-
sured consumption (4 predictor variables) and the changes be-
tween consecutive APDU sizes (1 dependent variable). Higher
correlation means that more information about consumption
can be inferred from the observed APDU sizes. When an
APDU is constructed, the meter encodes the accumulated
value of the measured units every 15 minutes. For example, if
0.4 kWh was consumed evenly during one hour and reading at
the beginning of the hour was 40.0 kWh, then the subsequent
readings contain 40.1, 40.2, 40.3 and 40.4 kWh values. We
derive our predictor variables from these signals by calculating
the difference of subsequent readings, e.g: 0.1, 0.1, 0.1, 0.1
kWh. The dependent variable is also the derived from the list
of compressed APDU sizes by taking the difference between
the current and previous APDU.

Since the APDUs in our test dataset measure four signals at
once, we use Multiple correlation coefficient (R) [12], [13] to
quantify the connection between the observed APDU sizes
and the underlying electricity consumption. This statistical
method generalizes the standard coefficient correlation to
having more than one independent variable. R ranges from
0 to 1, where higher values mean stronger relationship.

It is common to refer to this coefficient as the squared
multiple correlation coefficient (R?). Since value of R? is de-
pendent on the number of independent variables, it sometimes
overestimate the population correlation. Adjusted R?, denoted
by R? 4; Was introduced to correct for this overestimation. We
report both R and R? q; Values for every compression scheme
that we evaluated.

Let us assume {Xi,Xs,...,X;,.., X} and y is a set
of J independent variables and the dependent variable, re-
spectively. X and y are defined as the augmented matrix

collecting the data for the independent variables and the vector
of observations for the dependent variables, respectively, as:

1 =z ... TG ... T1,J Y1
X =11 zpn1 ... Tn; gl y= ||, (1)
1 zn1 o0 Ny TN,J YN

where N denotes tlie number of samples. The vector § = Xb
with b = (XTX) " XTy contains the predicted values of the
dependent variable. The regression sum of squares is

1
SSregression = bTXTy - N(lTy)27 (2)

where 17 is a row vector of 1’s conformable with y. The total
sum of squares is
1
SStora =y"y = 1 (179)*, 3)

Accordingly, the squared multiple correlation coefficient
and the adjusted squared multiple correlation coefficient are

SSreqgressi
R2 — regression 4
SStotal ()
N -1
Ry =1—[(1- RQ)(ﬁ)]- &)

Although several different formulas for RZ 4 exist, this is
one most commonly used. Rules-of-thumb [14] determine the
minimum number of samples to conduct multiple and partial
correlation. In particular, the minimum number of samples to
have an accurate multiple correlation coefficient is 50+ 8- J.

B. Numerical results

We evaluate the performance of several compression meth-
ods using the smart meter readings provided by Kamstrup
A/S. We use a CSV file containing 8400 measurements of
four signals with the resolution of 15 minutes. Hence, we will
have 4 independent variables. We evaluate the performance
considering six reporting time periods of 1,2,4, 12, 24 and 48
readings per APDU. For instance, since the meter is recording
once every 15 minutes, reporting time period of 2 means
having 2 measurements in an APDU and can be interpreted
as converting and uploading the buffer of a meter once every
half an hour. Currently most utility providers collect readings
once or twice a day, and wish to increase this granulariy.

We compare our techniques, i.e., header hash replacement,
GD block and stream compression and their combinations,
with the built-in compression methods Null, Delta and both
of them applied together Furthermore, we compare with
uncompressed scheme as well as the standard compression
scheme LZW [15]. We apply LZW to each APDU, separately.

For GD, we apply Hamming and Reed-Solomon codes to
create the mapping from a chunk to the basis-deviation pair.
In particular, we use a range of Hamming codes with 5 to 9
parity bits. The number of parity bits determines the chunk
size. We use Reed-Solomon codes over the finite field of 2%
with the error correction capability of 1 byte and chunk sizes

== Uncompressed = Null + Delta

GD Block Deduplication

=== GD Stream Deduplication == HH + GD Block Hamming

Null ~'— Header Hash (HH) =—#— GD Block Hamming == GD Stream Hamming =+ HH + GD Stream Hamming
—#— Delta —— LZW GD Block RS GD stream RS m Ideal
1.0{ = []
Segmented Summed
0.8+
206 o
I <
< -4
c c
=] o
o @
v w
2044 2
a a
£ £
S S
o o
0.2
0.0+
"Correlation (R) ‘ ‘Correlation (R)
104 = []
Segmented Summed
0.8+
206 R
© ©
-4 -4
c [=4
S S
b7l @
a o
2 0.4+ 24
(=8 o
£ £
S S
o o
0.2
0.0+

0.0 02 0.4 0.6 0.8 10
Correlation (Adjusted R?)

0.0 02 0.4 0.6 0.8 10
Correlation (Adjusted R?)

Fig. 5: Compression ratio and correlation of different compression schemes over different reporting time periods.

of 8,16, 32, 50, 64, and 100 bytes. For measuring compression
ratio with a GD-based compression scheme, we measure the
compression ratio for all different DD, Hamming and Reed-
Solomon configurations and report the best result of each.

Correlation coefficient cannot be calculated in case of
having a constant dependent or independent variable. If the
APDU sizes are constant such as uncompressed scheme or
header hash, no information can be inferred from the APDU
sizes. Thus, we assign the correlation coefficient of 0 for the
case of having a constant APDU size. If a measurement signal
is constant, i.e., the differential samples are constant and equal
to 0, the changes in this signal has no effect in the APDU size
changes and we can safely remove the signal. In our data set,
one of the four signals is constant, which we do not consider
it in multiple correlation coefficient calculation.

To calculate the multiple correlation coefficient, the number
of samples in the dependent and independent variables must
be equal. For reporting time period of 1, each APDU contains
a single set of measurements, i.e., 1 measurement of each
signal. Thus, the number of samples in the dependent and
independent variables are equal. However, for reporting time
period of 2, each APDU maintains 2 sets of measurements

causing the number of samples in the dependent variable to
be half of the number of samples in the independent variables.
To solve this issue for reporting time period of 2, we expand
each independent variable into 2 independent variables, each
containing half of the samples. One of them contains the odd
samples and the other one contains the even samples. Then,
we will have 2 - 3 = 6 independent samples for reporting
time period of 2 readings/APDU. Similarly, for reporting time
period of x, we have x - 3 independent variables. We call this
scheme, segmented approach, hereafter, due to splitting each
independent variable into multiple independent variables.

As previously mentioned, our data set contains 8400 mea-
surements per signal. According to the rules-of-thumb, we
do not have enough samples per variable for reporting time
periods of 24 and 48. For instance, for reporting time period of
24, we have 24 -3 = 72 (J = 72) independent variables. And,
we need a minimum of 504872 = 626 samples per variable;
while, we only have % = 200 samples per variable. This
means that the calculated multiple correlation coefficient is

not reliable for 24 and 48 reporting time periods.

To overcome this problem, we define another scheme called
summed approach. Rather than expanding each independent

variable into multiple independent variables, we sum the
consecutive differential values in the same time window that
is covered by the APDU, for each independent variable.
Thus, the number of independent variables is always equal
to 3 (J = 3) for all the reporting time periods which implies
the number of samples is always greater than 5048 -3 = 74.

Fig. 5 demonstrates compression ratio and multiple cor-
relation coefficient for different compression schemes over
different reporting time periods for segmented and summed
approaches. The black square at the top left is the theoretical
ideal case where the multiple correlation coefficient is 0 (e.g.
no information can be inferred) and the compression ratio is
1 (e.g. every APDU is compressed to zero bytes). The closer
to the ideal case translates to a better performance.

Each compression scheme’s curve has 6 markers on it. From
left to right, these markers belong to reporting time periods of
1,2,4,12, 24 and 48 except for header hash and uncompressed
approaches. Header hash replaces the header with a fixed
size hash digest. Thus, the size of the compressed APDU is
constant and the multiple correlation coefficient is considered
0, and, its curve has only vertical changes. The numbers
on its curve demonstrate the reporting time periods. As in
uncompressed scheme, we do not have either compression or
correlation, it is always fixed in (0,0).

The plots of Fig. 5 clearly identify two big trends: one
for most algorithms and one for some of our approaches.
Our methods with GD stream-based compressors and also our
header hash scheme get better in terms of both compression
and correlation with more frequent uploads (smaller reporting
time periods), while the built-in ones get worse in terms
of compression. For instance, header hash plus GD stream
(Hamming) has a correlation of 0.02 and compression ratio
of 0.88 for reporting time period of 1. Header hash scheme,
for reporting time period of 1, corresponds to correlation of
0 and compression ratio of 0.86. While for higher reporting
time periods, our schemes provide a little bit less compression
compared to Null or Null plus Delta, but, they provide less
correlation and hence higher security. For reporting time
period of 48, summed scheme, Null plus Delta has Ridj of
0.77 while GD stream (Hamming) and header hash plus GD
stream (Hamming) correspond to Rgdj of as low as 0.40.

While GD-based compressors provide slightly lower com-
pression with Hamming compared to standard deduplication,
but, GD-based compressors with Hamming gives a significant
higher security. Considering summed technique and reporting
time period of 48, R?ldj is equal to 0.82 and 0.40 for GD
stream Dedup and GD stream Hamming, respectively. This
shows that the Header Hash Replacement and GD stream-
based techniques correspond to significantly higher compres-
sion and privacy compared to the built-in DLMS methods,
when the reporting time period is reduced to an hour or less.

VI. SUMMARY

This paper analyzed the correlation between the packet
lengths resulting from data compression and the consumption
reported in the payload of those packets. To the best of our

knowledge, this is the first analysis of the kind for smart meter
data and, particularly, for the DLMS protocol. We analyze
this performance of standard compressors in DLMS, e.g.,
Delta, Null, as well as well-known lightweight compressors,
e.g., LZW. These solutions have a common trend: the fewer
measurements reported per packet, the less correlation but
also the less compression potential. Beyond these state-of-
the-art solutions, we propose new families of compressors that
provide a better compression-correlation trade-off. In fact, we
show that more frequent reporting (fewer measurements per
packet) with our schemes actually yields substantially better
compression and lower correlation. Thus, our proposals can
open the door to higher frequency reporting, which is highly
demanded by utility providers, by reducing the transmission
costs and reducing the potential for the studied side chan-
nel attack. Future work will focus on developing (dynamic)
mechanisms that can maintain a similar compression levels,
but that reduce even further the correlation between packet
length and consumption. We will consider combinations of
current proposals as well as techniques to randomize packet
lenghts or, alternatively, make the packet lenghts constant.

REFERENCES

[1] M.R. Asghar, G. Dén, D. Miorandi, and I. Chlamtac, “Smart meter data
privacy: A survey,” IEEE Comm. Surveys & Tutorials, vol. 19, no. 4,
pp. 2820-2835, 2017.

[2] E. D. Garcia and B. Jacobs, “Privacy-friendly energy-metering via
homomorphic encryption,” in Int. Workshop on Security and Trust
Management. Springer, 2010, pp. 226-238.

[3] Z. Erkin and G. Tsudik, “Private computation of spatial and temporal
power consumption with smart meters,” in Int. Conf. on Applied
Cryptography and Network Security. Springer, 2012, pp. 561-577.

[4] N. Busom, R. Petrlic, F. Sebé, C. Sorge, and M. Valls, “Efficient smart
metering based on homomorphic encryption,” Comp. Communications,
vol. 82, pp. 95-101, 2016.

[S] N. Buescher, S. Boukoros, S. Bauregger, and S. Katzenbeisser, “Two
is not enough: Privacy assessment of aggregation schemes in smart
metering,” Privacy Enhancing Tech., vol. 2017, no. 4, pp. 198-214,
2017.

[6] S. McLaughlin, P. McDaniel, and W. Aiello, “Protecting consumer
privacy from electric load monitoring,” in ACM Conf. on Computer
and Communications Security, 2011, pp. 87-98.

[71 M. Backes and S. Meiser, “Differentially private smart metering with
battery recharging,” in Data Privacy Management and Autonomous
Spontaneous Security. Springer, 2013, pp. 194-212.

[8] L. Sankar, S. R. Rajagopalan, S. Mohajer, and H. V. Poor, “Smart meter
privacy: A theoretical framework,” IEEE Trans. on Smart Grid, vol. 4,
no. 2, pp. 837-846, 2012.

[9] P. Barbosa, A. Brito, and H. Almeida, “A technique to provide dif-
ferential privacy for appliance usage in smart metering,” Information
Sciences, vol. 370, pp. 355-367, 2016.

[10] A. M. White, A. R. Matthews, K. Z. Snow, and F. Monrose, ‘“Phonotac-
tic reconstruction of encrypted voip conversations: Hookt on fon-iks,”
in IEEE Symposium on Security and Privacy. 1EEE, 2011, pp. 3-18.

[11] R. Vestergaard, D. E. Lucani, and Q. Zhang, “Generalized deduplica-
tion: Lossless compression for large amounts of small IoT data,” in
European Wireless Conference. VDE, 2019, pp. 1-5.

[12] H. Abdi, “Multiple correlation coefficient,” The University of Texas at
Dallas, pp. 648-651, 2007.

[13] A. G. Bluman, Elementary statistics: A step by step approach.
McGraw-Hill Higher Education New York, NY, 2009.

[14] S. B. Green, “How many subjects does it take to do a regression
analysis,” Multivariate behavioral research, vol. 26, no. 3, pp. 499—
510, 1991.

[15] T. A. Welch, “A technique for high-performance data compression,”
Computer, vol. 17, no. 6, p. 8-19, Jun. 1984. [Online]. Available:
https://doi.org/10.1109/MC.1984.1659158

