This is the publisher's PDF (Version of Record) of the article.
This is the final published version of the article.

How to cite this publication:

Publication metadata

Title: Ultraviolet diversity of Type Ia Supernovae
Author(s): Ryan J. Foley, Yen-Chen Pan, P. Brown, A. V. Filippenko, O. D. Fox, W. Hillebrandt, R. P. Kirshner, G. H. Marion, P. A. Milne, J. T. Parrent, G. Pignata, M. D. Stritzinger
Journal: Monthly Notices of the Royal Astronomical Society
DOI/Link: https://doi.org/10.1093/mnras/stw1440
Document version: Publisher’s PDF (Version of Record)

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

General Rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

If the document is published under a Creative Commons license, this applies instead of the general rights.

This coversheet template is made available by AU Library
Version 1.0, December 2017
Ultraviolet diversity of Type Ia Supernovae

Ryan J. Foley,1,2,* Yen-Chen Pan,1 P. Brown,3 A. V. Filippenko,4 O. D. Fox,5 W. Hillebrandt,6 R. P. Kirshner,7,8 G. H. Marion,9 P. A. Milne,10 J. T. Parrent,7 G. Pignata11,12 and M. D. Stritzinger13

1Astronomy Department, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA
2Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801, USA
3George P. and Cynthia Woods Mitchell Institute for Fundamental Physics & Astronomy, Department of Physics and Astronomy, Texas A. & M. University, 4242 TAMU, College Station, TX 77843, USA
4Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA
5Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
6Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching bei München, Germany
7Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
8Gordon and Betty Moore Foundation, 1661 Page Mill Road, Palo Alto, CA 94304, USA
9University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259, USA
10Steward Observatory, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85719, USA
11Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago, Chile
12Millennium Institute of Astrophysics, Avda. Republica 252, Santiago, Chile
13Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark

Accepted 2016 June 14. Received 2016 June 10; in original form 2016 April 3

ABSTRACT

Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) probe the outermost layers of the explosion, and UV spectra of SNe Ia are expected to be extremely sensitive to differences in progenitor composition and the details of the explosion. Here, we present the first study of a sample of high signal-to-noise ratio SN Ia spectra that extend blueward of 2900 Å. We focus on spectra taken within 5 d of maximum brightness. Our sample of 10 SNe Ia spans the majority of the parameter space of SN Ia optical diversity. We find that SNe Ia have significantly more diversity in the UV than in the optical, with the spectral variance continuing to increase with decreasing wavelengths until at least 1800 Å (the limit of our data). The majority of the UV variance correlates with optical light-curve shape, while there are no obvious and unique correlations between spectral shape and either ejecta velocity or host-galaxy morphology.

Using light-curve shape as the primary variable, we create a UV spectral model for SNe Ia at peak brightness. With the model, we can examine how individual SNe vary relative to expectations based on only their light-curve shape. Doing this, we confirm an excess of flux for SN 2011fe at short wavelengths, consistent with its progenitor having a subsolar metallicity. While most other SNe Ia do not show large deviations from the model, ASASSN-14lp has a deficit of flux at short wavelengths, suggesting that its progenitor was relatively metal rich.

1 INTRODUCTION

Type Ia supernovae (SNe Ia) are thermonuclear explosions of C/O white dwarfs in binary systems (see Hillebrandt & Niemeyer 2000, for a review). Variable amounts of 56Ni are produced in the explosion, which dictates the peak luminosity and photospheric temperature of the SN; this in turn determines the light-curve shape (Kasen & Woosley 2007), which has been empirically measured (Phillips 1993). These relatively simple physical connections make SNe Ia particularly good distance indicators, providing the first direct evidence for the currently accelerating expansion of the Universe.

* E-mail: rfoley@illinois.edu.
Despite our general physical understanding of SNe Ia, there remain significant questions about their progenitor systems (e.g. what is the nature of the companion star) and the explosion mechanism (e.g. how is the flame ignited and how does it propagate). Lacking this fundamental knowledge hinders future theoretical and observational investigations.

A unique way to probe the physics of SN Ia explosions and progenitors is through their ultraviolet (UV) spectra. While the main source of opacity for an SN atmosphere near peak brightness is electron scattering at most optical wavelengths, the UV opacity is dominated by a forest of overlapping lines from Fe-group elements (e.g. Baron et al. 1996; Pinto & Eastman 2000). UV photons are repeatedly absorbed and re-emitted, and typically are scattered redward where they eventually escape the expanding SN ejecta. Therefore, the UV is essential for understanding the optical emission of an SN Ia (Sauer et al. 2008) as well as being extremely sensitive to both the progenitor composition and explosion mechanism. Because of the high opacities in the UV, we can use UV spectroscopy to directly probe the composition of the outermost layers of the SN which are transparent at optical wavelengths soon after explosion.

After correcting for light-curve shape, SN Ia luminosity still depends significantly on host-galaxy environment (Kelly et al. 2010; Lampeitl et al. 2010; Sullivan et al. 2010; however, for an alternative explanation, see Kim et al. 2014). This may indicate that environmental effects or progenitor properties affect our luminosity calibration. The UV can potentially improve our physical understanding of the relationship between host-galaxy mass and SN Ia luminosity.

In particular, progenitor metallicity should affect the amount of radioactive material generated in the explosion (Timmes, Brown & Truran 2003) and the relationship between SN luminosity and light-curve shape (Mazzali et al. 2001; Mazzali & Podsiadlowski 2006; Podsiadlowski et al. 2006), while also shaping the UV spectrum (e.g. Höflich, Wheeler & Thielenmann 1998; Lentz et al. 2001). Such a relation may significantly impact the overall SN calibration and increase the scatter in SN distance measurements (Foley & Kirshner 2013). Additionally, if the mean SN progenitor metallicity has evolved with cosmic time, we would expect a systematic bias in cosmological distance estimates.

To address these questions, we have undertaken a major programme to obtain UV spectra of SNe Ia with the Hubble Space Telescope (HST). Until now, we have focused on the detailed study of individual events (Kirshner et al. 1993; Foley et al. 2012c, 2014; Foley 2013; Foley & Kirshner 2013; Pan et al. 2015). And while other studies have examined samples of SNe Ia with UV spectra (Foley, Filippenko & Jha 2008b; Cooke et al. 2011; Maguire et al. 2012; Wang et al. 2012), those data either did not extend blueward of ~2900 Å or had low signal-to-noise ratio (S/N).

Here, we present the first study of a sample of SNe Ia with near-maximum-light space-UV (extending to <2000 Å) spectra. With our sample, we are able to investigate how the spectra are influenced by other properties of the SN. With these initial results, we can account for correlations between spectral features and light-curve shape, which, in turn, can isolate effects related to other physical properties such as progenitor metallicity.

This paper is structured as follows. We present new observations of two SNe Ia and add those data to our previous sample in Section 2. The characteristics of the sample are examined and the spectral properties are analysed in Section 3. We discuss our results and conclude in Section 4.
The diversity of peak-luminosity optical SN Ia spectra is primarily driven by the photospheric temperature, which changes the ionization state of elements, and the ejecta velocity, which shifts and broadens absorption features. This diversity can be parameterized by the pseudo-equivalent widths (pEWs) of the Si\(\text{II}\) 6355 features (Branch et al. 2006). Alternatively, the diversity can be described by light-curve shape (e.g. \(\Delta m_{15}(B)\)) and the maximum-light velocity of Si\(\text{II}\) 6355, \(v_{\text{Si II}}\) (Wang et al. 2009). Photospheric temperature is highly correlated with both \(\Delta m_{15}(B)\) and the relative strengths of Si\(\text{II}\) λ5972, 6355 (Nugent, Kim & Perlmutter 2002); also, the pEW of Si\(\text{II}\) 6355 is correlated with \(v_{\text{Si II}}\) (Foley & Kasen 2011).

Fig. 1 displays the Si\(\text{II}\) parameter space for a sample of SNe Ia (Branch et al. 2006). Branch et al. (2006) subclassified SNe Ia by these measurements. There is a general trend from weak lines (small pEW values) to strong lines. The SNe with the weakest lines are called ‘Shallow Silicon’ and have spectra (and light curves) similar to those of SN 1991T (Filippenko et al. 1992b; Phillips et al. 1992). The SNe with slightly stronger lines are called ‘Core Normal’. The SNe with the strongest Si\(\text{II}\) 5972 lines share properties with SN 1991bg (Filippenko et al. 1992a; Leibundgut et al. 1993) and are called ‘Cool’. Finally, those SNe with particularly strong Si\(\text{II}\) λ6355, which generally correlates with high ejecta velocities, are called ‘Broad Line’.

Fig. 1 also displays where the SNe Ia with near-maximum-light UV spectra fall in this parameter space. For most of the sample, we were able to measure the pEWs directly from the HST spectra. However, we used other optical spectra to determine these values for SNe 1992A, 2009ig, 2011by, and 2012cg (Kirshner et al. 1993; Foley et al. 2012b; Silverman et al. 2012, 2013).

The 10 SNe Ia with high-S/N near-maximum-light spectra span most of the above parameter space. While the SNe generally include most of the Shallow Silicon and Core Normal region, they only barely reach the Cool and Broad-Line subclasses. Moreover, SN 2014J, which has very high and uncertain reddening, is the only true Broad-Line SN. Because of the uncertain reddening, we remove SN 2014J from our subsequent analysis, making our final sample primarily a continuum from SN 1991T-like SNe to cool, but not extremely cool SNe (i.e. similar to SN 1986G; Phillips et al. 1987), with no true Broad-Line SNe.

Optical spectral properties also correlate with light-curve shape (Nugent et al. 1995) and host-galaxy morphology (e.g. Hamuy et al. 2000; Howell 2001). We present basic parameters, including light-curve shape, velocity, and host-galaxy morphology for the sample in Table 1. Light-curve shape measurements were taken from the literature (Phillips et al. 1999; Foley et al. 2012b, 2014; Foley & Kirshner 2013; Pereira et al. 2013; Silverman et al. 2013; Im et al. 2015; Pan et al. 2015; Shappee et al. 2015; Marion et al. 2016). For the ejecta velocity, we measure the velocity of the Si\(\text{II}\) absorption-line minimum in the optical spectra, and correct those data to their maximum-light values (Foley, Sanders & Kirshner 2011) \(v_{\text{Si II}}^{0}\). Host-galaxy morphology measurements were obtained from the NASA/IPAC Extragalactic Database (NED).

3.2 Spectral correlations

To directly compare the UV spectral properties of our sample, we generate a smoothed spectrum of each SN using an inverse-variance Gaussian filter (Blondin et al. 2006) and scale the spectra to have roughly the same flux at 4000 Å. The SNe all have relatively similar optical spectra, and therefore the exact choice of scaling

<table>
<thead>
<tr>
<th>SN</th>
<th>(\Delta m_{15}(B)) (mag)</th>
<th>(v_{\text{Si II}}^{0}) (km s(^{-1}))</th>
<th>(E(B − V)_{\text{MW}}) (mag)</th>
<th>(E(B − V)_{\text{host}}) (mag)</th>
<th>Host morphology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992A</td>
<td>0.14 (0.05)</td>
<td>0.015</td>
<td>0.00 (0.02)</td>
<td>S0</td>
<td></td>
</tr>
<tr>
<td>2009ig</td>
<td>0.08 (0.02)</td>
<td>0.029</td>
<td>0.00 (0.05)</td>
<td>Sa</td>
<td></td>
</tr>
<tr>
<td>2011by</td>
<td>0.06 (0.03)</td>
<td>0.013</td>
<td>0.00 (0.03)</td>
<td>Sbc</td>
<td></td>
</tr>
<tr>
<td>2011c</td>
<td>0.06 (0.03)</td>
<td>0.008</td>
<td>0.00 (0.03)</td>
<td>Scd</td>
<td></td>
</tr>
<tr>
<td>2011v</td>
<td>0.06 (0.03)</td>
<td>0.010</td>
<td>0.00 (0.03)</td>
<td>E1</td>
<td></td>
</tr>
<tr>
<td>2012cg</td>
<td>0.06 (0.03)</td>
<td>0.018</td>
<td>0.18 (0.04)</td>
<td>Sa</td>
<td></td>
</tr>
<tr>
<td>2013dy</td>
<td>0.06 (0.03)</td>
<td>0.135</td>
<td>0.21 (0.01)</td>
<td>Sdm</td>
<td></td>
</tr>
<tr>
<td>2014J</td>
<td>0.06 (0.03)</td>
<td>0.54</td>
<td>1.19 (0.14)</td>
<td>Sm</td>
<td></td>
</tr>
<tr>
<td>ASASSN-14ip</td>
<td>0.06 (0.03)</td>
<td>0.022</td>
<td>0.32 (0.01)</td>
<td>Sc</td>
<td></td>
</tr>
<tr>
<td>2015F</td>
<td>0.06 (0.03)</td>
<td>0.179</td>
<td>0.04 (0.03)</td>
<td>Sbc</td>
<td></td>
</tr>
</tbody>
</table>

Note: \(v_{\text{Si II}}^{0}\) measurements have a typical uncertainty of 250 km s\(^{-1}\).

Figure 2. Near-maximum-light UV-optical spectra of several SNe Ia. In the main panels, the spectra have been smoothed using an inverse-variance Gaussian filter (Blondin et al. 2006) and scaled to have a similar flux level at \sim4000 Å. In the subpanels, the region near Si II $\lambda\lambda$5972, 6355 is shown in detail (with different flux scaling). The top-left panel displays the spectra with colours corresponding to those in Fig. 1. The marked regions indicate, from shorter to longer wavelengths, the f_{5025}, f_{5355}, and f_{3900} flux regions. The other panels display the same spectra, but coloured by different properties, with the top-right, bottom-left, and bottom-right panels representing light-curve shape, ejecta velocity, and host-galaxy morphology, respectively. The blue, black, and red curves correspond to (respectively) $\Delta m_{15}(B) < 1$, $1 < \Delta m_{15}(B) < 1.4$, and $\Delta m_{15}(B) > 1.4$ mag; $|v_{\text{SiII}}| > 12$ km s$^{-1}$, $10 < |v_{\text{SiII}}| < 12$ km s$^{-1}$, and $|v_{\text{SiII}}| < 10$ km s$^{-1}$; and E through Sa, Sb through Sc, and Scd through Sdm.

We display these flux values as a function of SN properties in Fig. 3. The flux in each of these regions is correlated with light-curve shape, although to varying degrees (Pearson correlation coefficient of $r = 0.71$, 0.52, and -0.82, respectively). With the exception of f_{5355}, none is highly correlated with ejecta velocity or host-galaxy morphology. For f_{5025}, it is correlated with host-galaxy morphology ($r = 0.66$), but this is likely because light-curve shape and host-galaxy morphology are highly correlated (e.g. Hamuy et al. 2000; Howell 2001).

To determine if there were additional correlations beyond light-curve shape, we first fit linear trends between the various flux measurements and $\Delta m_{15}(B)$. Examining the residuals, we find that there is a somewhat strong correlation between ejecta velocity and f_{5355} ($r = -0.63$), but the lack of many high-velocity SNe prevents a robust conclusion about a physical connection.

3.3 Spectral model

Despite the strong correlations between light-curve shape and flux, there is additional spectral diversity that is not described by this single parameter. This is obvious when comparing SNe 2011by and 2011fe, which have similar light-curve shapes but different UV continua (Foley & Kirshner 2013; Graham et al. 2015). To assess how much an individual spectrum deviates from a single parametrization, we generated a data-driven model of the UV spectra. Here, we fit the smoothed flux for all spectra in our sample at each wavelength as a function of $\Delta m_{15}(B)$ such that

$$f_{\lambda} = f_{\lambda,1.1} + s_{\lambda} \times (\Delta m_{15}(B) - 1.1),$$

where

- f_{λ} is the flux at wavelength λ,
- $f_{\lambda,1.1}$ is the single flux at $\Delta m_{15}(B) = 1.1$,
- s_{λ} is the spectral diversity factor that is correlated with $\Delta m_{15}(B)$,
where \(f_{1.1, \lambda} \) represents the spectrum of a nominal \(\Delta m_{15}(B) = 1.1 \) mag SN Ia and \(s_{\lambda} \) is the deviation from that spectrum for a hypothetical \(\Delta m_{15}(B) = 2.1 \) mag SN Ia. We present these parameters in Table 2.

Table 2. UV spectral model parameters.

<table>
<thead>
<tr>
<th>Wavelength (Å)</th>
<th>(f_{1.1, \lambda})</th>
<th>(s_{\lambda})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1700</td>
<td>0.0080</td>
<td>0.098</td>
</tr>
<tr>
<td>1705</td>
<td>0.0010</td>
<td>0.090</td>
</tr>
<tr>
<td>1710</td>
<td>0.0090</td>
<td>0.041</td>
</tr>
<tr>
<td>1715</td>
<td>0.0170</td>
<td>0.029</td>
</tr>
<tr>
<td>1720</td>
<td>0.0270</td>
<td>0.007</td>
</tr>
<tr>
<td>1725</td>
<td>0.0060</td>
<td>0.050</td>
</tr>
<tr>
<td>1730</td>
<td>0.0000</td>
<td>0.056</td>
</tr>
<tr>
<td>1735</td>
<td>0.0380</td>
<td>0.014</td>
</tr>
<tr>
<td>1740</td>
<td>0.0160</td>
<td>0.027</td>
</tr>
<tr>
<td>1745</td>
<td>0.0430</td>
<td>0.017</td>
</tr>
</tbody>
</table>

*Note. Table 2 is published in its entirety in the electronic edition of *Monthly Notices of the Royal Astronomical Society*. A portion is shown here for guidance regarding its form and content.*

The models have a pivot point at \(\sim 2700 \) Å. This implies that all SNe Ia should have the same flux at \(\sim 2700 \) Å relative to their optical flux (and in particular the flux at \(\sim 4000 \) Å). Bluedward of 2700 Å, faster decliners have relatively higher flux, while slower decliners have relatively more flux in the region \(\sim 2700–4000 \) Å.

The linear-\(\Delta m_{15}(B) \) flux model also provides a reasonable description of the individual spectra in our sample. For example, we show three models with \(\Delta m_{15}(B) = 0.86, 1.12, \) and 1.58 mag, respectively, in Fig. 5. We compare these models to SN 2012cg, SN 2013dy, and ASASSN-14lp (\(\Delta m_{15}(B) = 0.86, 0.92, \) and 0.80 mag, respectively); SN 2011by and SN 2011fe (\(\Delta m_{15}(B) = 1.14 \) and 1.10 mag, respectively); and SN 1992A and SN 2011iv (\(\Delta m_{15}(B) = 1.47 \) and 1.69 mag, respectively). In general, the spectra from SNe with similar light-curve shapes have similar spectra, and the model is also similar. In particular, SNe 1992A and 2011iv are remarkably similar even though they have the largest \(\Delta m_{15}(B) \) difference of any two SNe in any particular group. Alternatively, SNe 2011by and 2011fe are the most different of any two SNe in a group despite having the smallest \(\Delta m_{15}(B) \) difference (and being consistent within the uncertainties).
UV diversity of SNe Ia

Figure 5. Top panels: smoothed near-maximum-light UV spectra of several SNe Ia. The left-, middle, and right-hand panels present spectra of (respectively) SN 2012cg, SN 2013dy, and ASASSN-14lp; SNe 2011by and 2011fe; and SNe 1992A and 2011iv. The spectra are separated such that each panel has spectra of SNe having similar light-curve shapes, where each \(\Delta m_{15}(B) \) is labelled in parentheses. The spectrum from a given SN is coloured to match that presented in Fig. 1. The gold curves represent the model spectra, given by equation (1), for a nominal SN with a light-curve shape that is similar to those of the SNe whose spectra are displayed in that panel: \(\Delta m_{15}(B) = 0.86, 1.12, \) and 1.58 mag for the left-, middle, and right-hand panels, respectively. Bottom panels: fractional flux differences from the model spectra presented in the panels above. By dividing by the model spectrum, one can directly compare differences between SNe.

We can therefore use the model spectra to determine how similar a particular spectrum is to a typical SN with its light-curve shape. For instance, we can conclude that SN 2011fe has an excess of UV flux relative to the typical \(\Delta m_{15}(B) = 1.1 \) mag SN, similar to what one would expect from direct comparisons to SN 2011by (Foley & Kirshner 2013; Graham et al. 2015). Perhaps more interesting in that particular case is that SN 2011by has a UV spectrum more similar to the typical SN Ia with its light-curve shape despite its possibly lower-than-typical luminosity (Foley & Kirshner 2013).

Since the UV excess for SN 2011fe at \(\lambda < 2500 \) Å has been interpreted as a difference in progenitor metallicity (Foley & Kirshner 2013; Mazzali et al. 2014), comparing a given SN Ia near-maximum-light UV spectrum to the model spectrum could be a useful tool for determining the progenitor metallicity for SNe Ia that have no optical ‘twin’ counterpart. While our current model will be biased by the progenitor metallicity distribution of the SN Ia UV sample, we can refit the model excluding any given SN, and then compare the excluded SN to the new model.

Removing a particular SN spectrum from the sample and producing a new model, we can examine the deviation of a particular spectrum from the expected spectrum given its light-curve shape. To find SNe with potentially abnormal progenitor metallicities, one can examine the deviation from the model spectra in the far-UV and the near-UV, where the Lentz et al. (2000) models suggest that spectra of SNe Ia with only progenitor metallicity differences should and should not (respectively) differ from each other. Examining the regions \(1700 < \lambda < 2500 \) Å and \(2700 < \lambda < 4200 \) Å, we find two SNe that have a median absolute fractional difference of >35 per cent for the former and <25 per cent for the latter: SN 2011fe and ASASSN-14lp.

SN 2011fe has a spectrum consistent with that of the model in the near-UV (median absolute fractional deviation of 8 per cent), but inconsistent in the far-UV (median absolute fractional deviation of 75 per cent), with the far-UV flux being above the model (see Fig. 5). ASASSN-14lp is also consistent with the model in the near-UV (median absolute fractional deviation of 14 per cent), but has relatively low far-UV flux (median absolute fractional deviation of 40 per cent; see Fig. 5). Given that the relatively high far-UV flux of SN 2011fe is interpreted as being caused by a subsolar progenitor metallicity (Foley & Kirshner 2013; Mazzali et al. 2014; Baron et al. 2015), one may extrapolate to say that ASASSN-14lp has a high progenitor metallicity.

However, we caution that the conclusions regarding the progenitor metallicity of ASASSN-14lp rely on the other SNe in the sample with similar light-curve shapes (namely SNe 2012cg and 2013dy). Therefore, a stronger conclusion is that ASASSN-14lp had a higher progenitor metallicity than SNe 2012cg and 2013dy, without making comparisons to SNe having significantly different light-curve shapes.

3.4 UV diversity

Theory suggests that the diversity in SN Ia UV spectra is indicative of varying progenitor properties and explosion mechanisms. Any complete theory of SN Ia explosions must explain both the general UV spectral properties and the variance. Similarly, knowing the UV variance is critical for determining the cosmological utility of rest-frame UV data for SN cosmology.

To determine the variance as a function of wavelength, we take three similar approaches. First, we simply measure the mean and standard deviation of the sample. Secondly, we measure the median...
and median absolute deviation (MAD) of the sample. Finally, we produce a sample of average spectra using a bootstrap sampling (with replacement) method (see Foley et al. 2008a, and references therein). Because the spectra are normalized at ~4000 Å, the resultant spectra (and variances) are indicative of relative spectral features, including spectral slopes, but do not indicate differences in the overall luminosity. The resulting spectra are presented in Fig. 6.

Importantly, the mean and median spectra are similar at all wavelengths, indicating that no single spectrum dramatically alters the results. The spectra are normalized at ~4000 Å, and so the variance is naturally small there (3–8 per cent depending on method). This choice does not affect the results; notably, the variance is similarly small at ~5000 and ~6000 Å (again 3–8 per cent). However, the variance at ~3000 Å is significantly higher (16–32 per cent), indicating that the exact wavelength of normalization does not change our results.

In addition to the large increase in variance from the optical to the near-UV, the scatter continues to increase to the far-UV. In particular, the median variance in the range 2500–3000 Å is roughly 24 per cent, while the median variance at 1800–2300 Å is ~45 per cent. The increase in variance with decreasing wavelength extends the trend seen in previous studies (Foley et al. 2008a, 2012a; Ellis et al. 2008; Maguire et al. 2012) further into the UV.

The majority of this variance cannot be caused by incorrect reddening. A random error of 0.05 mag for each SN reddening corresponds to a typical scatter of 8 and 21 per cent at 2500–3000 and 1800–2300 Å, respectively. This means that the majority of the scatter (23 and 40 per cent, respectively) should be intrinsic to the SNe.

Similarly, differences in UV attenuation curves cannot cause the majority of the diversity. First, we performed a Monte Carlo experiment, where we took a set of nine UV spectra, reddened them by the amounts corresponding to the measured host-galaxy reddening for our set of SNe – but using different reddening laws, and then dereddening them using the same method we employ for our full analysis. We chose between the Cardelli et al. (1989) law, the Fitzpatrick (1999) law, and two Large Magellanic Cloud reddening laws Fitzpatrick (1999). For this case, the median flux variance is 1 and 5 per cent for wavelength ranges of 2500–3000 and 1800–2300 Å, respectively.

Secondly, for the subset of six SNe with small host-galaxy reddening (E(B − V)_host < 0.05 mag), the median flux variance is 37 and 35 per cent for wavelength ranges of 2500–3000 and 1800–2300 Å, respectively. These values are similar to the variance of the full sample, which includes moderate-reddening SNe. Combined, the UV diversity must be primarily driven by intrinsic diversity in the SNe.

4 DISCUSSION AND CONCLUSIONS

We have compiled and analysed the first sample of near-maximum-light UV SN Ia spectra. This sample spans most of the parameter space of all SNe Ia, but still lacks examples of the fastest decliners and those with the highest ejecta velocity.

With this sample, we examine trends between UV spectral behaviour and optical light-curve shape, ejecta velocity, and host-galaxy morphology. We find that the UV spectral continuum is driven primarily by light-curve shape, detecting only secondary correlations with ejecta velocity or host-galaxy morphology. We note that the lack of high-velocity SNe Ia in our sample prevents a thorough investigation of its impact on spectra. None the less, the velocities of UV spectral features broadly correlate with those of optical features.

Motivated by our initial investigations, we generated a UV spectral model that depends only on light-curve shape. This model is generally effective at describing the behaviour of the spectra in our sample. There are, however, notable differences. In particular, we find that SN 2011fe has significant excess flux at λ < 2500 Å, consistent with previous findings (Foley & Kirshner 2013). We interpret this difference as being caused by a particularly low-metallicity progenitor star for SN 2011fe.

We also find that ASASSN-14lp has a deficit of flux at λ < 2500 Å, indicating that it had a high-metallicity progenitor (at least relative to the other SNe Ia in our sample having similar light-curve shapes). This is a particularly intriguing result since the host galaxy of ASASSN-14lp, NGC 4666, is a superwind galaxy (Dahlem et al. 1997) with a high star formation rate and likely high metallicity.

The spectral model should allow for future spectral comparisons even when there is no SN having a similar light-curve shape. Since comparing an SN spectrum to the model removes spectral differences related to light-curve shape, any remaining differences are likely related to other parameters such as kinetic energy, asymmetries, and metallicity. As our sample expands the SN parameter space (especially to include higher velocity SNe) and observes SNe with similar optical properties, we will be able to better determine when an SN Ia has abnormal UV spectra for its light-curve shape.
Using several techniques, we found that the near-maximum-light spectral variance increases with decreasing wavelength from \(\sim 4000 \text{ Å} \) to at least 1800 Å. In particular, we find an increase in the variance from \(\sim 5 \) to \(\sim 25 \) to \(\sim 45 \) per cent at 4000 to 3000 to 2000 Å, respectively. This dramatic rise in diversity at shorter wavelengths indicates that UV observations will be of limited utility for cosmology unless further standardization is identified.

With these results, we are now capable of discerning what ‘additional’ physics contributes to the diversity of SNe Ia beyond the amount of \(^{56}\text{Ni} \) generated in the explosion. Future UV spectroscopy of SNe Ia with \(HST\) and \(Swift\), while such capabilities exist, will fulfill this long-term goal.

ACKNOWLEDGEMENTS

Based on observations made with the NASA/ESA \(HST\), obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5–26555. These observations are associated with programmes GO–4016, GO–12998, GO–12582, GO–12592, GO–13286, and GO–13646. We thank the STScI staff for accommodating our target-of-opportunity programmes. A. Armstrong, R. Bohlin, S. Holland, S. Meyett, D. Sahnow, P. Sonnentrucker, and D. Taylor were critical for the execution of these programmes.

\(Swift\) spectroscopic observations were performed under programme GI–5080130; we are very grateful to N. Gehrels and the \(Swift\) team for executing the programme quickly.

RJF gratefully acknowledges support from NASA grant 14-WPS14-0048, NSF grant AST-1518052, and the Alfred P. Sloan Foundation. GP is supported by the Ministry of Economy, Development, and Tourism’s Millennium Science Initiative through grant IC12009, awarded to The Millennium Institute of Astrophysics, MAS. AVF is grateful for financial assistance from NSF grant AST-1211916, the TABASGO Foundation, and the Christopher R. Redlich Fund. MS acknowledges generous support provided by the Danish Agency for Science and Technology and Innovation realized through a Sapere Aude Level 2 grant.

We thank the many amateur and professional astronomers who continue to discover nearby, incredibly scientifically useful SNe and publicly announce their discovery. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.

REFERENCES

Blondin S. et al., 2006, AJ, 131, 1648
Branch D. et al., 2006, PASP, 118, 560
Foley R. J., 2014, Astron. Telegram, 6815
Foley R. J., 2015, Astron. Telegram, 7220
Foley R. J. et al., 2012a, AJ, 143, 113
Fraser M. et al., 2015, Astron. Telegram, 7299
Hillebrandt W., Niemeyer J. C., 2000, ARA&A, 38, 191
Holoien T. W.-S. et al., 2014, Astron. Telegram, 6795
Leibundgut B. et al., 1993, AJ, 105, 301

UV diversity of SNe Ia 1315
SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Table 2. UV spectral model parameters.

Please note: Oxford University Press is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for this article.

This paper has been typeset from a TeX/LaTeX file prepared by the author.