Red giant masses and ages derived from carbon and nitrogen abundances

Marie Martig,1* Morgan Fouesneau,1 Hans-Walter Rix,1 Melissa Ness,1 Szabolcs Mészáros,2 D. A. García-Hernández,3,4 Marc Pinsonneault,5 Aldo Serenelli,6 Victor Silva Aguirre7 and Olga Zamora3,4

1Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
2ELTE Gothard Astrophysical Observatory, H-9704 Szentmihály, Szent Imre Herceg st. 1/2, Hungary
3Instituto de Astrofísica de Canarias (IAC), Via Lactea s/n, E-38200 La Laguna, Tenerife, Spain
4Departamento de Astrofísica, Universidad de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain
5Ohio State University, Department of Astronomy, 140 W. 18th Ave, Columbus, OH 43210, USA
6Instituto de Ciencias del Espacio (ICE/CSIC-IEEC) Campus UAB, Carrer de Can Magrans S/N E-08193 Cerdanyola del Vallés (Barcelona), Spain
7Department of Physics and Astronomy, Stellar Astrophysics Centre, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark

Accepted 2015 November 30. Received 2015 November 25; in original form 2015 October 9

ABSTRACT
We show that the masses of red giant stars can be well predicted from their photospheric carbon and nitrogen abundances, in conjunction with their spectroscopic stellar labels \(\log g, T_{\text{eff}}, \) and \([\text{Fe/H}]\). This is qualitatively expected from mass-dependent post-main-sequence evolution. We here establish an empirical relation between these quantities by drawing on 1475 red giants with asteroseismic mass estimates from \textit{Kepler} that also have spectroscopic labels from Apache Point Observatory Galactic Evolution Experiment (APOGEE) DR12. We assess the accuracy of our model, and find that it predicts stellar masses with fractional rms errors of about 14 per cent (typically 0.2 \(M_{\odot} \)). From these masses, we derive ages with rms errors of 40 per cent. This empirical model allows us for the first time to make age determinations (in the range 1–13 Gyr) for vast numbers of giant stars across the Galaxy. We apply our model to \(\sim 52,000 \) stars in APOGEE DR12, for which no direct mass and age information was previously available. We find that these estimates highlight the vertical age structure of the Milky Way disc, and that the relation of age with \([\alpha/M]\) and metallicity is broadly consistent with established expectations based on detailed studies of the solar neighbourhood.

Key words: stars: abundances – stars: evolution – stars: fundamental parameters.

1 INTRODUCTION

Obtaining accurate and precise ages for large numbers of stars in the Milky Way is a crucial ingredient in the comparison of observed data to galaxy formation simulations. It is also a first step towards understanding empirically how our Galaxy formed and how it evolved to its present-day structure. Stellar ages are unfortunately very hard to determine (see for example Soderblom 2010); they cannot be directly measured, and are always model-dependent.

A powerful way to measure ages for large samples of stars is to determine their location in the Hertzsprung–Russell diagram (HRD), and to compare this location with theoretical isochrones (Edvardsson et al. 1993; Ng & Bertelli 1998; Feltzing, Holmberg, & Hurley 2001; Pont & Eyer 2004; Jørgensen & Lindegren 2005; da Silva et al. 2006; Haywood et al. 2013; Bergemann et al. 2014). This technique yields precise ages in regions of the HRD where isochrones of different ages are clearly separated, namely, at the main-sequence turn-off and on the subgiant branch. By contrast, on the red giant branch, isochrones of different ages are very close in temperature, so that they cannot be robustly used to determine ages. However, giant stars are crucial probes of the structure of the Milky Way, and routine age estimates for giants would be of enormous importance: their high luminosity makes them observable out to large distances; and the giants in old and young (\(\sim 1 \) Gyr) populations have comparable luminosities and colours, making their selection function far more age-uniform than in the case of turn-off stars. As a consequence, they are the primary targets in a growing number of surveys, including the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a high-resolution spectroscopic survey in the \(H \) band (Zasowski et al. 2013; Majewski et al. 2015).

Because the mass of a star and its main-sequence lifetime are tightly correlated, ages for giants can be directly inferred from their mass. This has recently become the realm of asteroseismology, which can probe the internal structure of stars, not just their surface properties. Thanks to the \textit{CoRoT} (Baglin et al. 2006),
Kepler (Borucki et al. 2010), and now K2 space missions, solar-like oscillations have been detected in thousands of red giants (e.g. De Ridder et al. 2009; Hekker et al. 2009, 2011; Bedding et al. 2010; Mosser et al. 2010; Stello et al. 2013, 2015), for stars up to 8 kpc from the Sun (Miglio et al. 2013a). Solar-like oscillations are pulsations that are stochastically excited by convective turbulence in the stellar envelope (e.g. Goldreich & Keeley 1977; Samadi & Goupil 2001). These oscillation modes are regularly spaced in frequency and contain information on the structure of the star.

A first method to determine the properties of a star is to directly fit for the individual seismic frequencies (e.g. Huber et al. 2013), which gives a great precision on stellar masses and radii. However, it is very time-consuming and computationally intensive and thus can only be done for small numbers of stars at a time. A simpler way to extract information from the power spectrum of the oscillations is to measure two global asteroseismic parameters: ν, the frequency separation of two modes of same spherical degree and consecutive radial order, and ν_{max}, the frequency of maximal oscillation power. A set of scaling relations directly links these two fundamental parameters to the mass and radius of a given star, so that the mass can be derived as $M \propto v_{\text{max}}^{-4} T_{\text{eff}}^{3}$ (see Section 3.5 for more details).

Ages can then be inferred by comparing the seismic data to theoretical isochrones (e.g. Stello et al. 2009; Basu, Chaplin, & Elsworth 2010; Kallinger et al. 2010; Quirion, Christensen-Dalsgaard & Arentoft 2010; Casagrande et al. 2014), which leads to typical age uncertainties of the order of 30 per cent (e.g. Gai et al. 2011; Chaplin et al. 2014).

Unfortunately, asteroseismology data are currently available only for relatively small samples of stars, located in a few different fields in the Milky Way. Future space missions like PLAnetary Transits and Oscillations of stars and Transiting Exoplanet Survey Satellite will have a larger sky coverage. In the meantime, it is very important to look for methods to determine stellar masses and ages that can be applied to large numbers of stars over a large volume of the Galaxy.

This paper is a first step towards using the information present in the APOGEE stellar spectra of giant stars to derive their masses and ages. Our work was inspired by Masseron & Gilmore (2010); Kallinger et al. 2010; Quirion, Christensen-Dalsgaard & Arentoft 2010; Casagrande et al. 2014), which leads to typical age uncertainties of the order of 30 per cent (e.g. Gai et al. 2011; Chaplin et al. 2014).

Unfortunately, asteroseismology data are currently available only for relatively small samples of stars, located in a few different fields in the Milky Way. Future space missions like PLAnetary Transits and Oscillations of stars and Transiting Exoplanet Survey Satellite will have a larger sky coverage. In the meantime, it is very important to look for methods to determine stellar masses and ages that can be applied to large numbers of stars over a large volume of the Galaxy.

This paper is a first step towards using the information present in the APOGEE stellar spectra of giant stars to derive their masses and ages. Our work was inspired by Masseron & Gilmore (2010); Kallinger et al. 2010; Quirion, Christensen-Dalsgaard & Arentoft 2010; Casagrande et al. 2014), which leads to typical age uncertainties of the order of 30 per cent (e.g. Gai et al. 2011; Chaplin et al. 2014).

There is however some scatter in model predictions, partly because the exact mixing processes affecting the surface abundances are still debated. It is thus tricky to directly use model predictions to link C and N abundances to stellar mass and age. Our approach is to empirically determine the relationship between C and N abundances (and other stellar labels) and stellar mass in the APOKASC sample: there are currently 1475 stars for which both APOGEE high-quality spectroscopic information and Kepler asteroseismology information are available. In that sample, we find a strong correlation between mass, metallicity, and C and N abundances. The goal of this paper is to provide a fit to this relation, which can then be applied to a larger sample of APOGEE stars for which no Kepler data is available.

In a parallel paper, Ness et al. (2015) use The Cannon to confirm that APOGEE spectra contain information on stellar masses or ages. The Cannon is a new data-driven approach to determine stellar parameters from spectroscopic data (see Ness et al. 2015a). With no prior knowledge of stellar evolution or stellar atmospheres, The Cannon learns a mapping between wavelength and stellar parameters. Ness et al. (2015) show that The Cannon can also extract mass/age information from the APOGEE spectra, and that the spectral regions that contain the most mass information correspond to CN and CO molecules.

In this work, our approach directly links stellar masses to the stellar parameters derived by the APOGEE pipeline from the stellar spectra, without using the spectra themselves. In Section 2, we review the theoretical expectations for the correlation between mass and [C/N] for giants. We then describe in Section 3 the sample of stars we use, in particular, how we derive their masses and ages. In Section 4, we present the observed correlations between mass and chemical abundances in the APOKASC sample. We then explain how we fit these correlations, discuss the performance of the models and the remaining biases (Section 5). In Section 6, we finally conclude the paper with an application of our models to the whole APOGEE sample, and present the correlations between the derived masses/ages with [α/M] and metallicity, and with location in the Galaxy.

2 CNO CYCLE, DREDGE-UP AND OTHER MIXING PROCESSES

2.1 The CNO cycle

The CNO cycle consists in a series of nuclear reactions during which C, N and O atoms act as catalysts in the conversion of hydrogen to helium (see for instance Salasn & Cassisi 2005). While the total quantity of C, N, and O atoms is globally preserved during the nuclear reactions, their relative abundances evolve with time. More specifically, the slowest reaction in the CNO cycle corresponds to the proton capture on 14N, so that at equilibrium nitrogen becomes the most abundant element. In more detail, the CNO cycle produces an increase of the abundance in 14N in the stellar core, a decrease in 12C, a reduction of the ratio of 12C/13C to \sim20–30 (to be compared to a solar value of \sim90; see Asplund et al. 2009), and a very slight change in 16O.

At the end of the main sequence, the stellar interior is thus made of layers of material enriched in various elements. The exact shape of these layers can be affected by rotation during the main sequence (see for instance fig. 2 in Charbonnel & Lagarde 2010). The total amount of CNO-processed material in the core depends on stellar mass: stars with a higher mass have a larger central temperature, so that a larger fractional region of the stellar core reaches 12C burning temperatures. As a result, massive stars contain a higher fraction of nitrogen in their core.

2.2 Post-main-sequence evolution

As a star leaves the main sequence and starts to ascend the giant branch, its core contracts and the base of its convective envelope extends deeper into the star, to reach zones enriched in CNO-processed elements (Iben 1965). This event, called the first dredge-up, results...
in a sharp change of surface abundances as the stellar surface becomes mixed with material enriched in nitrogen and depleted in carbon.

Fig. 1 illustrates the change of surface [C/N] for stars ascending the giant branch. The top panel shows stars from APOGEE DR12 in the log g versus T eff plane, colour-coded by their measured surface [C/N]. Stars at the very bottom of the RGB have a high [C/N] ratio, and this ratio quickly decreases for stars higher up on the RGB: the transition from one regime to the other corresponds to the first dredge-up. This figure also shows that the first dredge-up happens within a similar range of log g in the APOGEE data and in the stellar evolution models of Lagarde et al. (2012).

Another way to visualize the effect of the first dredge-up is to compare [C+O/M] and [C/N] of stars before and after the dredge-up, as done in Fig. 2. Following the dredge-up, the surface abundance of [C+O/M] is unchanged because the total number of C, N, and O atoms is conserved (and the abundance of oxygen is only slightly affected by the dredge-up), but the ratio [C/N] clearly decreases.

In canonical stellar evolution models, after the first dredge-up the surface abundances do not change any more until the AGB phase. However, observational data show that this is not the case: the carbon isotopic ratio and the abundance of carbon further decrease (and nitrogen increases) as stars climb the RGB (Lambert & Sneden 1977; Suntzeff 1981; Gilroy 1989; Charbonnel 1994; Gratton et al. 2000; Shetrone 2003; Spite et al. 2006; Tautvaisiene et al. 2010; Angelou et al. 2012; Kirby et al. 2015). These observations require non-canonical mixing mechanisms to move CNO-processed material from the hydrogen-burning shell into the convective envelope. Possible sources of deep mixing could be rotation (Charbonnel 1995; Chaumukh, Pinsonneault, & Terndrup 2005) or thermohaline instabilities (Charbonnel & Zahn 2007), although the importance of this process is debated (Angelou et al. 2012).

In any case, this additional mixing is only experienced by stars that go through an extended RGB evolution: this is the case of low-mass stars (below ~2–2.2 M⊙). Indeed, at the end of the main sequence, these low-mass stars have an electron degenerate core and this core slowly grows in mass along the RGB until it reaches a critical mass of 0.48 M⊙, at what point helium burning is ignited. This event, the helium-core flash, marks the tip of the RGB. As mass-loss increases rapidly as stars ascend the RGB, stars reaching the RGB-tip will experience the loss of a large fraction of their envelopes. After this, low-mass stars join the red clump (RC).

Stars that are more massive than ~2–2.2 M⊙ only go through the first dredge-up without any further mixing processes or mass-loss because their RGB evolution is very short. Indeed, these stars are massive enough to have a non-degenerate core and to ignite helium gently; once this is done they populate the secondary RC (Girardi 1999).
Figure 3. Relationship between stellar mass and surface [C/N] in the APOKASC sample. The top panel compares the APOKASC stars (grey dots, here limited to \(-0.1 < [M/H] < 0.1\)) to stellar evolution models of Weiss & Schlattl (2008) in red and Lagarde et al. (2012) in blue (we show the ‘standard’ models only including the first dredge-up). For the data and the models to match, the observed [C/N] has to be increased by 0.2: this reflects calibration issues for C and N abundances in APOGEE DR12. Models and data all show a decrease of [C/N] with increasing stellar mass, although models do not agree on the magnitude of the predicted decrease. The bottom panel compares the mean mass as a function of [C/N] for APOKASC stars on the upper and lower RGB: in the presence of extra-mixing processes along the RGB, stars on the upper RGB would be expected to have a lower [C/N] at fixed stellar mass, but there is no evidence for this in the current data.

As a result, after the first dredge-up, the surface of higher mass stars is comparatively richer in N and poorer in C with respect to lower mass stars. As an example, we show in Fig. 3 the relationship between mass and the [C/N] ratio after the first dredge-up in the models of Lagarde et al. (2012) as well as models computed with the GARching Stellar Evolution Code (GARSTEC; Weiss & Schlattl 2008) for stars of solar metallicity: there is a decrease of [C/N] with increasing stellar mass. This figure also compares the models with observed mass and [C/N] from our APOKASC sample (see Section 3 for explanations of how these quantities are derived): data and model predictions are roughly in agreement. There are however variations between models. This, together with potential calibration issues of abundances in APOGEE (in Fig. 3, we have to shift the observed [C/N] by 0.2 dex to match model predictions), makes it difficult to directly use model predictions to translate an observed [C/N] into mass or into age, as suggested by Salaris et al. (2010).

Another potential hurdle in the use of [C/N] to determine stellar masses is that the relation between abundances and mass might depend on stellar evolutionary phase, as we discussed in the previous section. Stars in the upper RGB would both undergo extra mixing and mass-loss compared to stars on the lower RGB. Stars in the RC would have the largest mass-loss, while stars in the secondary clump would have no extra mixing and no mass-loss, and should be similar to stars on the lower RGB. We do not have a sample of massive stars on the lower RGB to compare to our secondary clump stars, but we can compare the mass and surface [C/N] of stars on the lower and upper RGB (lower panel in Fig. 3). In the APOKASC sample, we find no significant evidence for a different relation between mass and [C/N] in the upper and lower RGB. This is slightly unexpected, but could reflect the lower sensitivity to extra mixing of [C/N] compared to $^{12}C/^{13}C$ (e.g. Tautvaišienė et al. 2010), and the inefficiency of extra mixing processes at the relatively high metallicities of our sample (Gilroy 1989; Gratton et al. 2000; Charbonnel & Zahn 2007; Martell, Smith, & Briley 2008).

Because of these uncertainties, in this paper, we decide not to rely on theoretical models to connect the masses of giant stars to the abundance of carbon and nitrogen at their surface. Instead, we explore this correlation empirically using the APOKASC sample.

3 THE APOKASC SAMPLE

The APOKASC project is the spectroscopic follow-up by APOGEE (Majewski et al. 2015, as part of the third phase of the Sloan Digital Sky Survey, SDSS-III; Eisenstein et al. 2011) of stars with asteroseismology data from the Kepler Asteroseismic Science Consortium (KASC). The first version of the APOKASC catalogue (Pinsonneault et al. 2014) contains seismic and spectroscopic measurements for 1989 giants, with the spectroscopic information corresponding to APOGEE’s Data Release 10 (DR10; Ahn et al. 2014).

In this work, we keep the same original sample of 1989 stars and their seismic parameters, but update their T_{eff} and abundances to DR12 values (Alam et al. 2015; Holtzman et al. 2015). This follows the same procedure as in Martig et al. (2015).

3.1 Seismic parameters from Kepler

The 1989 giants have been observed by Kepler over a total of 34 months (Q0–Q12) in long cadence mode, i.e. with a 30 min interval (e.g. Jenkins et al. 2010). The raw light curves were prepared as described in García et al. (2011), and the seismic parameters v_{max} and $\Delta \nu$ were then measured using five different techniques (Huber et al. 2009; Hekker et al. 2010; Kallinger et al. 2010; Mathur et al. 2010; Mosser et al. 2011). The final values of v_{max} and $\Delta \nu$ given in the APOKASC catalogue correspond to the ones obtained with the OCT method from Hekker et al. (2010). The other four techniques are only used in an outlier rejection process (stars with v_{max} values that differ significantly from one technique to another are removed from the sample) and to estimate systematic uncertainties on the measured parameters.

3.2 Spectroscopic parameters from APOGEE

APOGEE is a high-resolution ($R = 22,500$) H-band stellar survey which uses a multifibre spectrograph attached to the 2.5 m SDSS telescope (Gunn et al. 2006). The raw spectra are first processed by the APOGEE data reduction pipeline, as described in Nidever et al. (2015). Stellar parameters are then derived with the APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP; Mészáros et al. 2013, García Pérez et al., 2015). ASPCAP compares the observed spectra to a large grid of synthetic spectra (Mészáros et al. 2012; Zamora et al. 2015) to determine the associated main stellar parameters. This synthetic grid has six dimensions: T_{eff}, log g, metallicity [M/H], as well as enhancement in α-elements [α/M], in carbon [C/M] and in nitrogen [N/M]. A χ^2 optimization finds the best-fitting spectrum, and the corresponding stellar parameters are assigned to the observed star.
In addition to these parameters, DR12 also provides calibrated abundances for some elements as well as post-calibrated values of T_{eff} and $\log g$ by using literature studies of well-known star clusters, and the APOKASC catalogue as reference for $\log g$. In this work however, we always use the raw values to ensure that they are all self-consistent. In practice, this means that we use the values from the FPARAM array in DR12.1

Finally, the ASPCAP pipeline also returns uncertainties on stellar parameters and abundances. It seems however that the formal errors from the 6D fits to the spectra underestimate the true uncertainties on the stellar parameters: globular and open clusters are expected to be chemically homogeneous but the spread in chemical abundances for stars within a given cluster is larger than the formal errors (Holtzman et al. 2015). A corrected (empirical) estimate of the uncertainties is then provided by measuring the spread of abundances within star clusters. Unfortunately, this procedure does not work for [C/M] and [N/M] because giant stars in clusters are expected to have an intrinsic spread in [C/M] and [N/M]. Thus, while DR12 provides uncertainties for [C/M] and [N/M] (with mean values of 0.04 and 0.07 dex, respectively), these values are probably underestimated. A further analysis by Masseron & Gilmore (2015) shows that the precision on [C/N] is still probably better than 0.1 dex.

3.3 Carbon and nitrogen abundances

The abundances of carbon and nitrogen are mainly measured from molecular lines of CO and CN. Because these lines become very weak for hot stars at low metallicity, the minimum abundance of [C/M] that can be measured depends on T_{eff} and [M/H] (see Mészáros et al. 2015, for a discussion of this issue). We want to eliminate from our sample stars with only an upper limit measurement on [C/M] (and a lower limit on [N/M]), as such measurements may introduce a bias in our analysis if left in the sample. Thus, following Mészáros et al. (2015) we remove from our sample selection stars with a raw T_{eff} greater than 4550 K if $-1 < [\text{M/H}] < -0.5$.

For stars with [M/H] >-0.5, we performed our own upper limit tests by selecting stars that have T_{eff} greater than 4550 K and [C/M] >-0.1. We performed our own χ^2 search using Autosynth (Mészáros et al. 2015) to fit individual CO lines in the APOGEE windows from [C/M] = -0.4 to $+0.7$. By inspecting the χ^2 as a function of [C/M], we found that the minimum [C/M] possible to measure is on the level of -0.4 to -0.5 dex, far smaller than the most carbon poor star found in our sample. Thus, it was determined that no temperature cut is necessary near solar metallicity and below 5000 K.

Even for stars with ‘good’ measurements, there is a zero-point issue with the absolute [N/M] values: they are ~ 0.2 dex too low compared to literature values as discussed by Holtzman et al. (2015) and Masseron & Gilmore (2015). This systematic offset does not impact this study. However, such offsets also mean the results of our fits cannot be blindly applied to another survey, or even to another data release of APOGEE: the abundances would first need to be put on the same scale, for instance using The Cannon (Ness et al. 2015a).

3.4 Sample selection

Our goal is to learn an empirical relation between C, N abundances and stellar parameters. Therefore, we need a reliable sample of stars. Starting from the APOKASC–DR12 giant stars sample, we first eliminate stars for which any of the ASPCAP flags are set to WARNING or BAD (this signals potential problems with the determination of spectroscopic parameters), as well as stars for which the spectra have a signal-to-noise ratio below 100. We also tried other quality cuts using the χ^2 value of the ASPCAP best fit to the spectra, and using the number of times a given star was observed, but none of those impacted our results.

To ensure the good quality of the seismic masses we derive, we remove stars with relative uncertainties on Δv and v_{max} greater than 5 per cent, and the most metal-poor stars ([M/H] < -1), for which the standard seismic scaling relations might be less accurate (Epstein et al. 2014). Finally, we exclude the fast rotating stars (14 rapid and 12 additional anomalous rotators) identified by Tayar et al. (2015). Such stars might be accreting mass from a companion, so that their surface properties might not correspond to their mass and evolutionary stage. Out of the 1989 stars with seismic and spectroscopic information, 1475 stars remain; these objects form the sample used in this paper.

3.5 Determining masses from seismic scaling relations

Solar-like oscillations can be described by two main global astroseismic parameters, Δv and v_{max}. The large frequency separation, Δv, depends on the sound travel time from the centre of the star to the surface, and is thus related to the stellar mean density (Tassoul 1980; Ulrich 1986; Kjeldsen & Bedding 1995), $\Delta v \propto \rho^{1/2} \propto M^{1/2} R^{-3/2}$. (1)

On the other hand, v_{max} (the frequency of maximal oscillation power) is related to the acoustic cut-off frequency (Brown et al. 1991), which mainly depends on surface gravity and temperature (Kjeldsen & Bedding 1995; Belkacem et al. 2011), $v_{\text{max}} \propto g T_{\text{eff}}^{1/2} \propto M R^{-1/2} T_{\text{eff}}^{-1/2}$.

(2)

The standard seismic scaling relations, equations (1) and (2), can be combined to derive the mass of a star as $M = \left(\frac{v_{\text{max}}}{v_{\text{max}}^{\odot}} \right)^3 \left(\frac{\Delta v}{\Delta v^{\odot}} \right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff}}^{\odot}} \right)^{1.5}$. (3)

We adopt $T_{\text{eff}}^{\odot} = 5777$ K, $v_{\text{max}}^{\odot} = 3140$ μHz, $\Delta v^{\odot} = 153.05$ μHz. The solar values Δv^{\odot} and v_{max}^{\odot} are the ones used to build the APOKASC catalogue and were obtained by Hekker et al. (2013) with the OCT method. As an exception to the rule generally used in this paper, we do not use here the raw ASPCAP values of T_{eff}, but use instead the values that are calibrated to match the photometric temperatures calculated from the 2MASS $J-K_s$ colour (as in González Hernández & Bonifacio 2009). This ensures that T_{eff} is closer to the ‘true’ physical scale. We derive the mass uncertainty from the uncertainties on v_{max}, Δv, and T_{eff}, which have average values of 3.1, 2.4 and 1.9 per cent, respectively; this leads to an average mass uncertainty of 0.2 M$_{\odot}$ (or 14 per cent).

While scaling relations have been widely used to determine stellar masses (Silva Aguirre et al. 2011), small deviations to the Δv scaling relation have been proposed, both based on studies of stellar models and on the determination of masses for stars in open clusters. White et al. (2011) use stellar models to show that the relation between Δv and stellar density matches the standard relation for solar type stars on the main sequence, but that deviations of the order of 2 per cent in the relation between Δv and $\sqrt{\rho}$ exist for stars on the giant branch. This translates into a mass 8 per cent smaller than predicted by the scaling relations. Huber et al. (2013) find a similar offset

1 See http://www.sdss.org/dr12/irspec/parameters/
Figure 4. Surface gravity as a function of effective temperature for stars in the APOKASC sample. The surface gravities are determined from the Kepler seismic parameters, while T_{eff} is derived from the APOGEE spectra. The points are colour-coded by mass.

when comparing the mass of the red giant Kepler-56 obtained from the scaling relations to the mass obtained from an analysis of the individual seismic frequencies.

It seems also that deviations to the standard relations are different for RC and RGB stars. This is not unexpected, because these two types of stars have very different internal structures, hence different temperature and sound speed profiles. Miglio et al. (2012) studied the mass of stars in open clusters and found an offset between the mass of RC and RGB stars that cannot be explained by mass-loss alone. Further models by Miglio et al. (2013b) also suggest a different offset in the $\Delta \nu$ scaling relation for RC and RGB stars (in the sense that RC masses are underestimated and RGB masses are overestimated by the standard relation).

To apply modifications to the scaling relation to our sample of stars, we first need to identify RC and RGB stars. While some of the stars in the APOKASC catalogue have such a label (‘CLUMP’ or ‘RGB’ in the catalogue), it is not the case for all stars. We classify stars as RC stars if they are identified as such by their seismic properties, or if they were identified as being in the RC region of the H–R diagram by Bovy et al. (2014), or if $\log g < 0.00221 \times T_{\text{eff}} - 7.85$. All other stars are identified as RGB stars.

For all stars identified as RGBs following these criteria, we reduce the mass by 8 per cent, while we leave the mass of RC stars as predicted by the scaling relations. Fig. 4 shows the distribution of our sample in the surface gravity versus T_{eff} plane, with stars colour-coded by their mass. Stars in the RC show a correlation between mass and g, with the most massive stars being located in the secondary clump at $\log g$ slightly below 3.

3.6 From mass to age

In principle, ages of giant stars can be derived by fitting isochrones to the location of stars in the HRD. However, as discussed in Martig et al. (2015), the location of the RGB is quite uncertain in stellar evolution models, and uncertainties on the measurements of T_{eff} exacerbate the problem. We thus choose a simple way to translate mass into age based on the stars’ age as a function of stellar mass for different phases of stellar evolution (at the bottom of the RGB, in the RC, and at the tip of the asymptotic giant branch – AGB).

For a given metallicity, we use the relation between mass and age as given by the PARSEC isochrones (Bressan et al. 2012) using a mass-loss parameter $\eta = 0.2$. Although the mass-loss parameter is an uncertain quantity, such a relatively low value is favoured by the study of Miglio et al. (2012). We use a set of isochrones regularly spaced by $\log (\text{age yr}^{-1}) = 0.015$ from 100 Myr to 13 Gyr, and ranging from $[\text{M/H}] = -1$ to 0.5 in bins of 0.1. For each star, we use the set of isochrones closest to its metallicity (without interpolating between sets of different metallicity).

For RC stars (as defined in the previous section), we use the relation between mass and age in the RC. 10 stars have a mass too small to be consistent with the isochrones we use: either their measured stellar mass is too low (from measurement errors, or because the scaling relations should be modified also for the RC stars), or they have lost more mass than prescribed by our chosen set of isochrones. We attribute an age of 13 Gyr to these stars.

For the rest of the stars, we use the relation between mass and age at the bottom of the RGB. 32 stars have a too low mass to be consistent with isochrones. For the stars with $\log (g) < 2$, we use the relation between mass and age at the tip of the AGB, for stars with $\log (g)$ between 2 and 2.7, we use the relation for RC stars. Stars that cannot be attributed an age in any of these ways are given an age of 13 Gyr.

For each star, we estimate an age uncertainty by translating into age the upper and lower limit of our mass uncertainty range following the procedure we have just described.

4 AN OBSERVED CORRELATION BETWEEN MASS AND CHEMICAL ABUNDANCES

As a sanity check, we show in Fig. 5 the relation between $[\alpha$/M], $[\text{M/H}]$ and mass (left-hand column, top row) or age (left-hand column, bottom row) for the 1475 giants we have selected from the APOKASC sample. This figure shows that, as expected from previous studies and from chemical evolution models, the α-rich sequence mostly contains low-mass, old stars. As $[\alpha$/M] decreases, stars become more massive and younger. To investigate the scatter in age within a bin of $[\alpha$/M] and $[\text{M/H}]$, we first group bins together using a Voronoi binning algorithm (Cappellari & Copin 2003) so that each new bin now contains eight stars on average. Within each of the new Voronoi bins, we then compute the median mass and age for all stars in that bin. If we compare the values of mass and age for each star to the median mass and age of stars in the same Voronoi bin, we find a median scatter in mass of 9 per cent, and a median age scatter of 26 per cent.

As we mentioned in Section 2, stellar evolution models predict a correlation between mass, carbon and nitrogen abundances. This correlation arises from internal evolution of the stars, hence from a different origin than the $[\alpha$/M] and mass correlation. Indeed, the latter does not reflect the stellar evolution but the composition of the material from which stars are born.

In the right-hand column of Fig. 5, we show the relation between $[\text{C/N}], [\text{M/H}]$ and mass or age for the APOKASC giants. For a given metallicity, a low $[\text{C/N}]$ ratio corresponds to a high stellar mass and a small age. Similarly as in Fig. 3, the magnitude of the decrease of $[\text{C/N}]$ with stellar mass is consistent with stellar evolution models.

2 For this, we simply check which stars of the APOKASC sample are also in the RC catalogue from Bovy et al. (2014).

3 http://stev.oapd.inaf.it/cmd
Red giant masses and ages derived from carbon and nitrogen abundances

We build Voronoi bins in the same way as in the \([\alpha/M]–[M/H]\) plane, and then compare the values of mass and age for each star to the median mass and age of stars in the same Voronoi bin. The median scatter in mass is 9 percent, and the median age scatter is 25 percent. This is similar to the age and mass scatter in the \([\alpha/M]–[M/H]\) plane.

Fig. 6 demonstrates that the correlation between mass and \([C/N]\) arises both from a decrease of \([C/M]\) with mass and an increase of \([N/M]\) with mass: both elements contain mass information, as predicted by stellar evolution models.

5 MODELLING THE CORRELATION BETWEEN MASS AND ABUNDANCES OF CARBON AND NITROGEN

5.1 Fitting procedure: a polynomial feature regression

We want to generate a model that can predict masses and/or ages from a set of spectroscopic observables. We start with only considering element abundances, namely \([M/H]\), \([C/M]\), and \([N/M]\). The set of abundances could be larger, but in this work, we want to stay close to the stellar evolution physics detailed above. Therefore, we explore the construction of such predictive model with a minimum number of chemical elements.

Our model is relatively simple. We define it from a polynomial combination of the different features (e.g. chemical elements), which also includes cross-terms between the different dimensions.

This allows us to effectively expand our data set to non-linear combinations of our initial dimensions.

More specifically, we denote the coefficient in front of the \(i\)th label \(l_i\) as \(k_i\). Then, the predicted value \(y\) (i.e. age or mass) is given by

\[
y = \sum_i k_i l_i + \epsilon
\]

which we can write with vectors as

\[
y = K \cdot L + \epsilon.
\]

This corresponds to a simple linear regression (linear in the parameters, \(K\)), in which \(\epsilon\) is a constant allowing us to account for a non-zero offset in this relation. The training data is provided in Table 1.

We estimate the internal uncertainties on the fit parameters and on the predicted values by drawing 100 fiducial samples from the data (assuming Gaussian errors on both the input labels and on masses or ages), and performing a set of 100 linear regressions, giving 100 different realizations of both the model and the predicted mass or age. We use the standard deviation of these 100 different predicted masses for each star as an estimator of the mass internal uncertainty in the model.

We also validate our model through cross-validation. This is a way to test how well our model would apply to other data sets, and to give a better estimate of the model performance and external errors. We use a Leave-One-Out Cross-Validation (LOOCV) algorithm:
for a set of \(N \) stars, this consists of training the model on \(N - 1 \) stars, and testing the performance on the last star, i.e. measuring the error the model makes when predicting parameters of that particular star. This step is repeated \(N \) times, once per star from the training data set.

5.2 Results

We first apply the method described in the previous section to fit for mass as a function of \([\text{M/H}], [\text{C/M}], [\text{N/M}], \) and \([\text{C+N}/\text{M}]\). We add \([\text{C+N}/\text{M}]\) in the fit because stellar models predict this remains constant during the dredge-up and is thus characteristic of the birth composition of a star.

The coefficients we obtain for the fitting function are provided in Table A1 in Appendix A. The mass uncertainty for each star (obtained from 100 different realizations of the model as explained in the previous section) is of 0.02 \(M_\odot \) on average. This uncertainty is much smaller than the rms error returned by the cross-validation, which is 0.26 \(M_\odot \), or 18 per cent in fractional error. This means that the individual mass internal uncertainties are meaningless, and that the error budget is dominated by systematic errors (either an inappropriate model, or biases in the data itself).

The left-hand panel of Fig. 7 shows the predicted mass as a function of true mass for the stars in our APOKASC training set, and the relative mass error as a function of the true mass. The dashed lines represent the mean and 1σ scatter around the mean in both cases.

The simple fit that we have used performs relatively well for most stars with a mass between 1 and 1.5 \(M_\odot \) but tends to overpredict the mass of low-mass stars, and significantly underpredict the mass of massive stars.

An important aspect to check is if the way we derived the masses themselves could be the source of that bias. There are indeed different ways to determine masses from the seismic parameters: the direct method (used here), and the grid-based method that relies on comparing observed stellar parameters with theoretical isochrones. For the APOKASC sample, both ways of determining masses give similar results, except at very low and very high masses (fig. 3 in Martig et al. 2015). This could explain part of the bias we find. However, we have tried to fit for the grid-based masses, and find the same bias to be present and extremely similar.

To explore further the origin of the bias, the left-hand panel of Fig. 8 shows the individual relative mass error as a function of \(T_{\text{eff}} \) and \(\log g \). While the values of the relative errors are small on average, they show some significant structure in the HRD. In particular, the mass of secondary clump stars is systematically underpredicted: these are the stars with a mass of \(\sim 2 M_\odot \), that also appeared as problematic stars in Fig. 7.

These massive stars might be outliers in our fits because they actually may not follow the same relation between [C/N] and mass as the rest of the sample. As described in Section 2, massive stars only experience a short RGB phase and do not undergo extra mixing after the first dredge-up. They also do not go through the helium...
Red giant masses and ages derived from carbon and nitrogen abundances

Figure 7. Results of the two different mass fits we performed: on the left, the fit including only element abundances, and on the right the fit that also includes T_{eff} and $\log(g)$. In both cases, we show on the top the predicted mass as a function of the true mass, the dashed lines represent the mean of the relation and the 1σ range around the mean. The bottom panels contain the relative mass error, with also the mean and 1σ range in dashed lines. While both fits show a similar scatter, adding T_{eff} and $\log(g)$ allows us to reduce the bias significantly.

Figure 8. Relative mass error for the two different mass fits shown in the $\log(g)$ versus T_{eff} plane (the median mass error is shown in bins of $\log(g)$ versus T_{eff}—in red, the model underpredicts the mass, in blue the model overpredicts the mass). The fit that only include element abundances underpredicts the mass of stars in secondary clump (here appearing in red in the left-hand panel at $\log(g)$ slightly below 3); these are the high-mass stars for which the fit is performing poorly. Adding T_{eff} and $\log(g)$ as labels decreases the magnitude of the residuals overall and also makes their distribution more uniform across the HRD.

flash at the tip of the RGB (Salaris & Cassisi 2005), they do not shed their envelope away and do not lose as much mass as lower mass stars during this instability phase. These reasons could explain why the mapping of $[\text{C}/\text{N}]$ to mass could differ for massive stars.

To improve our model, one possibility would be to gather a larger training set, on which we could use more flexible fitting procedures. This is left for future work, as an extended version of the APOKASC sample will be released soon. In the meantime, we try to improve our fit by adding more stellar labels measured by the APOGEE pipeline.

5.3 Improved fit using T_{eff} and $\log(g)$

Because the mass residuals show some structure in the HRD, we try to include T_{eff} and $\log(g)$ in the fit. This new model is less physically motivated in the sense that T_{eff} and $\log(g)$ do not directly govern the stellar evolution physics explaining why mass is related on $[\text{C}/\text{M}]$ and $[\text{N}/\text{M}]$. It could however empirically capture variations in the correlation between mass and abundances as a function of stellar evolutionary phase. We find that adding these two additional labels leads to better fits to the data: the rms error returned by the cross-validation decreases to 0.21 M_{\odot}, or 14 per cent in fractional error (this is again much larger than individual internal mass uncertainties). As for the previous section, the fit coefficients are given in Table A2 in Appendix A.

The right-hand panel of Fig. 7 shows the relation between predicted and true mass for the new model, where we recall that ‘true’ mass refers to the seismic estimates. The bias that was present in the previous fit (see right-hand panel of Fig. 7) is still there, but is strongly reduced, particularly at high masses. The
reduction of the bias at high mass is mostly due to the inclusion of T_{eff} while both T_{eff} and log g help for the low-mass range. The comparison between the left- and the right-hand panel of Fig. 8 illustrates that the overall magnitude of the residuals decreases, especially for the secondary clump stars. There are still massive stars for which the model underestimates their masses by 20–30%: these stars are mostly outside the secondary clump, but at lower log g (these are the yellow dots at log $g < 2.5$ in Fig. 4). Some of these stars might have accreted mass from a companion, an event that would have altered both their mass and surface abundances.

By contrast, our model tends to overpredict the mass of low-mass stars ($\leq 0.9 \, M_\odot$). If we consider stars with masses lower than $0.9 \, M_\odot$, most of them are located in the RC in a very tight range of log $g = 2.3–2.4$. This range of log g is consistent with theoretical expectations for old stars as shown in fig. 11 of Martig et al. (2015). For some of these stars, the mass is correctly predicted by our models, while other stars have a mass error of 30–40%.

We suspect that such a scatter could be due to different mass-loss rates undergone by the stars during the RGB phase. Low-mass stars are indeed the ones for which mass-loss is the strongest (see Fig. 3). As a result of losing a significant amount of mass during the RGB phase, their [C/N] ratio would be consistent with a higher mass than their actual present-day mass. The scatter in mass-loss rates could partly be due to tidally enhanced stellar winds in stars with a binary companion (Tout & Eggleton 1988; Lei et al. 2013).

Overall, these biases in the low- and high-mass ranges result in a larger rms mass error for stars in the RC ($0.24 \, M_\odot$) compared to RGB stars ($0.15 \, M_\odot$).

To test whether the biases could be due to a different scaling between mass and abundances for RGB and RC stars (that maybe would not be captured by the inclusion of T_{eff} and log g in the fit), we compare the masses we predict with the global fit to masses that are obtained from a separate fit to the RGB and RC stars. Fig. 9 shows that the predicted masses are very similar in both cases, so that the systematic biases we find are not eliminated by fitting RC and RGB separately.

In spite of these residual biases at small and high mass, the fit is successful at reproducing most of the global trends seen in the data. Fig. 10 shows the distribution of the fitted masses in the [C/N] versus [M/H] and [α/M] versus [M/H] planes, highlighting the consistency of the model with the data.

5.4 Fitting for age

Given the success of our model to predict masses, we also apply the same technique to obtain a model that predicts ages using the same set of labels [including T_{eff} and log(g)]. While age is not the fundamental stellar property that governs the changes in surface abundances on the giant branch, the tight relation between mass and age makes it possible to derive ages from our set of labels. We actually fit for log(age) instead of age, to ensure that the fitted ages are positive. We also impose an upper limit of 13 Gyr to the ages we derive. The coefficients and their errors are given in Table A3 in Appendix A.

The cross validation algorithm gives an absolute rms age error of 1.9 Gyr, and 40% relative error (the relative age error is only computed for stars older than 1.5 Gyr since younger stars have a much greater relative age error).

In Fig. 11, we show the result of the fit on the left-hand panel, and on the right-hand panel the ages we would obtain by translating the
Red giant masses and ages derived from carbon and nitrogen abundances

Figure 11. Results of the two different ways of determining ages: on the left, log(age) is directly obtained from a fit to element abundances, T_{eff} and log g, while on the right log(age) is derived from [M/H] and the predicted mass, as described in Section 3.6. In both cases, we show on the top the predicted log(age) as a function of the true log(age), the dashed lines represent the mean of the relation and the 1σ range around the mean. The bottom panels contain the relative age error, with also the mean and 1σ range in dashed lines.

6 APPLICATION TO DR12 DATA: DERIVING MASS AND AGE FOR LARGE SAMPLES OF STARS

In this section, we apply our model to APOGEE DR12 data for which no prior information is available from Kepler, in particular age information. Our model allows us to transfer information from the sample with asteroseismic data to a much larger sample. However, in this paper, we only aim to demonstrate astrophysical plausibility of our results and we leave a detailed discussion of the age structure of the Milky Way to future papers.

6.1 A word of caution: stellar evolution versus galactic chemical evolution

Because of potential disagreements between measurements of carbon and nitrogen abundances between different surveys, the fitting functions we provide are only applicable to APOGEE DR12 data. The method remains valid, but the models would need to be recalibrated for any different survey, or even for future data releases of APOGEE.

Even when only applying the fits to APOGEE DR12, a complication comes from the fact that the stars’ C and N abundances might reflect both stellar evolution and initial abundances in the stars at birth. For samples covering large portions of the Milky Way, one could imagine that the variations of birth abundances from one region to another could become significant. Such variations might create false spatial trends in the derived masses and ages.

To study the birth abundances of stars, one needs a sample of stars on the main sequence or on the subgiant branch, i.e. stars that have not gone through the first dredge-up yet. Stellar parameters for dwarfs have to be taken with extreme caution in DR12 because the spectral grids used to fit the observed spectra do not include rotation (see Holtzman et al. 2015). We identified instead a sample of 1943 giants or subgiants with surface abundances of C and N that are consistent with a pre-dredge-up composition. These stars are identified as being at the very bottom of the RGB, and as having a high [C/N] ratio (see the black box in Fig. 1). The cuts we use to define the pre dredge-up sample are the following:

\[
\begin{align*}
T_{\text{eff}} &< 5200 \\
3.5 &< \log(g) < 4 \\
0.00125 &< \frac{T_{\text{eff}}}{2.875} < \log(g) < 0.002 &< T_{\text{eff}} - 6.0.
\end{align*}
\]

The [C/N] ratio for these stars reflects how chemical evolution proceeds in the Milky Way. We show in Fig. 12 the relation between [C/N] and [M/H] for the subgiants as a function of their spatial location (top panel, using distances from Ness et al., 2015c) and content in α elements (bottom panel). This shows that for this sample of stars, the relation between birth [C/N] and metallicity is independent of location within the Milky Way (within the range of distances probed by the subgiants, which is unfortunately limited to a few kpc around the Sun).

The study of the carbon and nitrogen abundances of pre-dredge-up giants shows that galactic chemical evolution proceeds in the same way over the range of distances these stars probe, so that our
The cut on log g is also important to ensure that we only include post dredge-up giants, for which the correlation between mass and [C/N] is in place. 52,286 stars remain after the cuts; their resulting masses and ages are given in Table 2 and are shown in Fig. 13 in the [α/M] versus [M/H] plane.

Even though [α/M] is not included in our fits, we naturally recover the trend of [α/M] versus age that is expected from studies in the solar neighbourhood (Fuhrmann 2011; Haywood et al. 2013; Bensby et al. 2014; Bergemann et al. 2014). We find that the α-rich sequence is significantly older than the α-poor sequence. However, our analysis does not support the idea of a clear age discontinuity between thin and thick disc (as was argued by Masseron & Gilmore 2015 based on the difference of [C/N] for the two components). We will explore this aspect in more detail in future papers. Finally, some outliers appear on top of the mean relation apparent in Fig. 13: some of the α-rich stars are young, some of the α-poor stars are old. If real, these stars would provide interesting constraints to models of radial mixing and Galactic chemical evolution (Chiappini et al. 2015; Martig et al. 2015). However, these stars could also be catastrophic outliers in our fits, and their ages would need to be independently confirmed with other techniques before we can draw any conclusions about them.

It is also important to mention that while the relative distribution of ages looks plausible, the absolute scaling might be slightly off. Stars with [α/M] > 0.15 here have a median age of 7.9 Gyr, while previous studies suggest ages of the order of 9–10 Gyr for the α-rich sequence (Haywood et al. 2013; Bensby et al. 2014; Bergemann et al. 2014). Part of an explanation for the too low median age of the α-rich stars could be related to the cuts we have to apply to the DR12 sample (that might remove part of the parameter space where older stars would be found), but this issue might simply reflect the fact that our model is known to underestimate the ages of old stars (as shown in Fig. 11).

An important subsample of DR12 is the RC catalogue of Bovy et al. (2014). A first advantage is that selecting stars of a given evolutionary stage should reduce biases in our relative mass determination, even though ages for the RC are very dependent on the mass-loss prescription adopted. Another important advantage of that RC sample is that distances have been determined with an individual uncertainty of 5 per cent, which allows us to study the spatial distribution of stars as a function of their age.

Applying our cuts to the RC catalogue produces a sample of 14,685 stars. Fig. 14 represents the age distribution of these stars in the [α/M] versus [M/H] plane, showing results consistent with the larger DR12 sample. Fig. 15 shows the spatial distribution of stars colour-coded by their age. As expected, young stars are concentrated towards the disc mid-plane and older stars extend to higher height above and below the disc. The existence of such spatial correlations reinforces the plausibility of our ages, at least in a relative sense.

7 Conclusion

We have laid out a powerful and practical approach to estimate stellar masses, and implied ages, for giant stars on the basis of the stellar labels derived from their spectra. We use a sample of 1475 giant stars with asteroseismic mass estimates from the APOKASC survey to study and model the correlation between stellar mass and surface abundances of carbon and nitrogen. The power of our approach is that for the first time it is possible to empirically link mass and C, N abundances for a large sample of stars, instead of relying on models to make the connection between both (as was done for instance by Masseron & Gilmore 2015). We show...
that, as expected from stellar evolution models, the [C/N] ratio of giants decreases with increasing stellar mass. The magnitude of the observed decrease is to first order consistent with simple dredge-up models: we do not see any strong evidence for extra mixing in the APOKASC giants. To further test models of mixing processes would require a sample of stars reaching lower log g and/or lower metallicity, for which these effects might be stronger (Gratton et al. 2000; Spite et al. 2005).

Using APOKASC as a training set, we provide several sets of fitted formulae to predict mass and age as a function of [M/H], [C/M], [N/M], [(C+N)/M], T_{eff} and log g. For the stars in the training set, our models are able to predict masses with relative rms errors of 14 per cent and rms age errors of 40 per cent. This simple model has

Table 2. Predicted masses and ages for stars in APOGEE DR12. We do not provide individual mass and age uncertainties because the error budget is dominated by systematic errors. The full table is available in electronic form.

<table>
<thead>
<tr>
<th>2MASS ID</th>
<th>T_{eff} (K)</th>
<th>log g</th>
<th>[M/H]</th>
<th>[C/M]</th>
<th>[N/M]</th>
<th>M_{out} (M$_{\odot}$)</th>
<th>age$_{\text{out}}$ (Gyr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2M00000211+6327470</td>
<td>4600</td>
<td>2.5</td>
<td>0.02</td>
<td>−0.20</td>
<td>0.28</td>
<td>1.53</td>
<td>2.9</td>
</tr>
<tr>
<td>2M00000446+5854329</td>
<td>4725</td>
<td>2.9</td>
<td>0.02</td>
<td>−0.05</td>
<td>0.19</td>
<td>1.41</td>
<td>3.6</td>
</tr>
<tr>
<td>2M00000559+1504343</td>
<td>4791</td>
<td>3.3</td>
<td>−0.06</td>
<td>0.01</td>
<td>0.06</td>
<td>1.09</td>
<td>7.5</td>
</tr>
<tr>
<td>2M00000797+6436119</td>
<td>4449</td>
<td>2.5</td>
<td>−0.21</td>
<td>−0.05</td>
<td>0.18</td>
<td>1.29</td>
<td>3.9</td>
</tr>
<tr>
<td>2M00000818+5634264</td>
<td>4895</td>
<td>2.9</td>
<td>−0.19</td>
<td>0.10</td>
<td>−0.02</td>
<td>1.31</td>
<td>4.9</td>
</tr>
<tr>
<td>2M00000866+7122144</td>
<td>4585</td>
<td>2.7</td>
<td>−0.07</td>
<td>0.09</td>
<td>0.25</td>
<td>1.40</td>
<td>3.2</td>
</tr>
<tr>
<td>2M00001014+6348085</td>
<td>4865</td>
<td>3.3</td>
<td>0.06</td>
<td>−0.09</td>
<td>0.15</td>
<td>1.57</td>
<td>2.8</td>
</tr>
<tr>
<td>2M00001242+5524391</td>
<td>4579</td>
<td>2.6</td>
<td>0.12</td>
<td>0.01</td>
<td>0.25</td>
<td>1.17</td>
<td>6.3</td>
</tr>
<tr>
<td>2M00001296+5851378</td>
<td>4659</td>
<td>2.9</td>
<td>0.07</td>
<td>0.06</td>
<td>0.19</td>
<td>1.25</td>
<td>5.1</td>
</tr>
<tr>
<td>2M00001328+5725563</td>
<td>4461</td>
<td>2.6</td>
<td>0.10</td>
<td>−0.08</td>
<td>0.25</td>
<td>1.36</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Figure 13. Application of our model to APOGEE DR12 data. Both panels represent [α/M] as a function of [M/H], colour-coded by predicted mass on the left and predicted age on the right.

Figure 14. Application of our model to the RC catalogue of Bovy et al. (2014). The distribution of stellar ages in the [α/M] versus [M/H] plane is consistent with the larger DR12 sample shown in Fig. 13.

Figure 15. Spatial distribution of stars in the RC catalogue, colour coded by median age in bins of galactocentric radius and height above and below the mid-plane. The young stars are found close to the mid-plane, while old stars extend much further above and below the disc.
a small bias in its mass estimates; our predicted mass are too high at
low masses and too low at high masses. This could either mean that
our models are not flexible enough, or that the input data contain
biases (either in the APOGEE stellar parameters or in the seismic
masses), or that the biases reflect different physical scalings between
stellar mass and surface abundances for different types of stars. As
discussed in Section 5, mixing processes and mass-loss efficiency
vary as a function of stellar mass and could create part of the bias
we observe. Future versions of the APOKASC sample will contain
thousands of more stars, including stars at lower metallicities and
lower log g. This opens up many possibilities for new projects,
including for instance detailed comparisons between stellar models
and data, and fitting the data with more flexible methods, such as
Gaussian processes.

We must emphasize that individual mass estimates (and even
more so age estimates) must be viewed with great caution, espe-
cially if they seem exceptional. For individual stars, the surface
abundance of C and N might not always reflect their present-
day stellar mass, for instance if the presence of a binary com-
panion altered their surface composition and/or their mass. Our
method is therefore perhaps best suited for statistical studies of
large samples of stars, and to compare the properties of different
populations.

Generally speaking, our method of deriving masses and ages for
giants has many advantages. First, it is calibrated on asteroseismic
data, and provides a relatively simple prescription to transfer the
seismic information on to larger data sets. The ideal situation would
be to directly have seismic masses measured for large sample of
stars covering a large fraction of the Milky Way, but this is not
presently the case. In addition, we also note that relying on \([\alpha/M]\)
as a proxy for age (or using mono-abundance populations in the
\([\alpha/M]\) versus \([M/H]\) plane as approximations of mono-age popula-
tions) might work to some degree (as we also showed in Section 6),
but \([\alpha/M]\) is an age indicator that depends on the chemical evol-
ution of the Milky Way, and not on the properties of individual
stars.

A related approach to calibrate masses and ages for giants using
seismic data is presented in Ness et al. (2015). The Cannon confirms
that the mass/age information is present in the APOGEE spectra,
and that the five regions that carry most of the mass/age information
 correspond to four molecular CN lines and one molecular CO line.
This is encouraging, and future papers will compare both methods
of age determination: from the spectra with the Cannon, and from
the element abundances with our techniques. We will also explore
in more detail the implications of our work for the formation and
evolution of the Milky Way by comparing the age structure of the
Galaxy with numerical simulations.

ACKNOWLEDGEMENTS

We thank the referee for suggestions that improved the presentation
of the paper and the clarity of our arguments. We thank Andrea
Miglio and Nadege Lagarde for interesting discussions, as well as
Friedrich Anders, Jo Bovy, Ricardo Carrera, and Matthew Shetrone
for useful comments on this paper. We thank Michele Appellari
for making his Voronoi binning code available in Python. Analysis
and plots presented in this paper used Python and packages from
NumPy, SciPy, Matplotlib, and Scikit-learn (Hunter 2007; Oliphant
2007; Pérez & Granger 2007; Pedregosa et al. 2011). MM acknowl-
edges support from the Alexander von Humboldt Foundation.
The research has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7)
ERC Grant Agreement no. [321035]. SM has been supported by the
János Bolyai Research Scholarship of the Hungarian Academy of
Sciences. DAGH and OZ acknowledge support provided by the
Spanish Ministry of Economy and Competitiveness under grant
AYA-2014-58082-P. MP would like to acknowledge support from
NASA grant NNX15AF13G. AMS is partially supported by grants
ESF2013-41268-R (MINECO) and 2014SGR-1458 (Generalitat of
Catalunya). Funding for the Stellar Astrophysics Centre is provided
by The Danish National Research Foundation (Grant agreement no.:
DNRF106). The research is supported by the ASTERISK project
(ASTERoseismic Investigations with SONG and Kepler) funded by
the European Research Council (Grant agreement no.: 267864).
VSA acknowledges support from VILLUM FONDEN (research grant
10118).

Funding for SDSS-III has been provided by the Alfred P. Sloan
Foundation, the Participating Institutions, the National Science
The SDSS-III web site is http://www.sdss3.org/. SDSS-III is man-
aged by the Astrophysical Research Consortium for the Participat-
ing Institutions of the SDSS-III Collaboration including the Uni-
versity of Arizona, the Brazilian Participation Group, Brookhaven
National Laboratory, Carnegie Mellon University, University of
Florida, the French Participation Group, the German Participation
Group, Harvard University, the Instituto de Astrofisica de Canarias,
the Michigan State/Notre Dame/JINA Participation Group, Johns
Hopkins University, Lawrence Berkeley National Laboratory, Max
Planck Institute for Astrophysics, Max Planck Institute for Extrait-
restrial Physics, New Mexico State University, New York Univer-
sity, Ohio State University, Pennsylvania State University, Univer-
sity of Portsmouth, Princeton University, the Spanish Participation
Group, University of Tokyo, University of Utah, Vanderbilt Uni-
versity, University of Virginia, University of Washington, and Yale
University.

REFERENCES

Angelou G. C., Stancliffe R. J., Church R. P., Lattanzio J. C., Smith G. H.,
Baglin A., Auvergne M., Barge P., Deleuil M., Catala C., Michel E., Weiss
W., in Fridlund M., Baglin A., Lochard J., Conroy L. eds ESA SP-
1306: The CoRoT Mission Pre-Launch Status - Stellar Seismology and
Planet Finding. ESA, Noordwijk, p. 165
Belkacem K., Goupil M. J., Dupret M. A., Samadi R., Baudin F., Noels A.,
Borucki W. J. et al., 2010, Science, 327, 977
Bressan A., Marigo P., Girardi L., Dal Cero C., Rubele S.,

M. Martí et al.

3668

Table A1. Best-fitting coefficients for mass as a quadratic function of \([\text{M/H}], [\text{C/M}], [\text{N/M}]\) and \([(\text{C+N})/\text{M}]]\).

<table>
<thead>
<tr>
<th></th>
<th>[\text{M/H}]</th>
<th>[\text{C/M}]</th>
<th>[\text{N/M}]</th>
<th>[(\text{C+N})/\text{M}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.08</td>
<td>-0.18</td>
<td>4.30</td>
<td>1.43</td>
</tr>
<tr>
<td>[\text{M/H}]</td>
<td>-1.05</td>
<td>-1.12</td>
<td>-0.67</td>
<td>-1.30</td>
</tr>
<tr>
<td>[\text{C/M}]</td>
<td>-49.92</td>
<td>-41.04</td>
<td>139.92</td>
<td></td>
</tr>
<tr>
<td>[\text{N/M}]</td>
<td>-0.63</td>
<td>-86.62</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A2. Best-fitting coefficients for mass as a quadratic function of \([\text{M/H}], [\text{C/M}], [\text{N/M}], [(\text{C+N})/\text{M}], \text{T}_{\text{eff}}\) and log \(g\).

<table>
<thead>
<tr>
<th></th>
<th>[\text{M/H}]</th>
<th>[\text{C/M}]</th>
<th>[\text{N/M}]</th>
<th>[(\text{C+N})/\text{M}]</th>
<th>\text{T}_{\text{eff}}/4000</th>
<th>log (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95.87</td>
<td>-10.40</td>
<td>41.36</td>
<td>15.05</td>
<td>-67.61</td>
<td>144.18</td>
</tr>
<tr>
<td>[\text{M/H}]</td>
<td>-0.73</td>
<td>-5.32</td>
<td>-0.93</td>
<td>7.05</td>
<td>5.12</td>
<td></td>
</tr>
<tr>
<td>[\text{C/M}]</td>
<td>-46.78</td>
<td>-30.52</td>
<td>133.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[\text{N/M}]</td>
<td>-1.61</td>
<td>38.94</td>
<td>-15.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[(\text{C+N})/\text{M}]</td>
<td>-88.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\text{T}_{\text{eff}}/4000</td>
<td>27.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>log (g)</td>
<td>-18.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A3. Best-fitting coefficients for log(age) as a quadratic function of \([\text{M/H}], [\text{C/M}], [\text{N/M}], [(\text{C+N})/\text{M}], \text{T}_{\text{eff}}\) and log \(g\).

<table>
<thead>
<tr>
<th></th>
<th>[\text{M/H}]</th>
<th>[\text{C/M}]</th>
<th>[\text{N/M}]</th>
<th>[(\text{C+N})/\text{M}]</th>
<th>\text{T}_{\text{eff}}/4000</th>
<th>log (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-54.35</td>
<td>6.53</td>
<td>-19.02</td>
<td>-12.18</td>
<td>37.22</td>
<td>59.58</td>
</tr>
<tr>
<td>[\text{M/H}]</td>
<td>0.74</td>
<td>4.04</td>
<td>0.76</td>
<td>-4.94</td>
<td>-1.46</td>
<td></td>
</tr>
<tr>
<td>[\text{C/M}]</td>
<td>26.90</td>
<td>13.33</td>
<td>-77.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[\text{N/M}]</td>
<td>-1.04</td>
<td>17.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[(\text{C+N})/\text{M}]</td>
<td>51.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\text{T}_{\text{eff}}/4000</td>
<td>15.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>log (g)</td>
<td>-34.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This paper has been typeset from a \TeX/\LaTeX\ file prepared by the author.