Title: The alleviating effect of elevated CO$_2$ on heat stress susceptibility of two wheat (*Triticum aestivum* L.) cultivars

Session: Plant response and adaptation to abiotic stress

Sindhuja Shanmugam1, Katrine Heinsvig Kjaer2*, Carl-Otto Ottosen2, Eva Rosenqvist3, Dew Kumari Sharma3 and Bernd Wollenweber4

1Department of Bioenergy, Tamilnadu Agricultural University, Coimbatore, India.
2Department of Food Science, Aarhus University, Kirstinebjergvej 10, 5792 Årslev, Denmark
3Institute of Agricultural Sciences and Ecology, University of Copenhagen, Hojbakkegaard Allé 9, 2630 Taastrup, Denmark
4Institute for Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark

*Presenting author

This study analysed the alleviating effect of elevated CO$_2$ on stress-induced decreases in photosynthesis and changes in carbohydrate metabolism in two wheat cultivars (*Triticum aestivum* L.) of different origin. The plants were grown in ambient (400 µl l$^{-1}$) and elevated (800 µl l$^{-1}$) CO$_2$ with a day/night temperature of 15/10°C. At the growth stages of tillering, booting and anthesis, the plants were subjected to heat stress of 40°C for three continuous days. Photosynthetic parameters, maximum quantum efficiency of photosystem II (PSII) photochemistry (F_v/F_m) and contents of pigments and carbohydrates in leaves were analysed before and during the stress treatments as well as after one day of recovery. Heat stress reduced P_N and F_v/F_m in both wheat cultivars, but plants grown in elevated CO$_2$ maintained higher P_N and F_v/F_m in comparison to plants grown in ambient CO$_2$. Heat stress reduced leaf chlorophyll contents and increased leaf sucrose contents in both cultivars grown at ambient and elevated CO$_2$. The content of hexoses in the leaves increased mainly in the tolerant cultivar in response to the combination of elevated CO$_2$ and heat stress. The results show that heat stress tolerance in wheat is related to cultivar origin, the phenological stage of the plants and can be alleviated by elevated CO$_2$. This confirms the complex interrelation between environmental factors and genotypic traits that influence crop performance under various climatic stresses.