Matchings with Externalities and Attitudes

Simina Brânzei Aarhus University, Denmark

Joint with

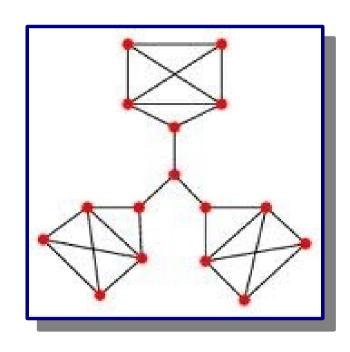
Tomasz Michalak, Talal Rahwan, Kate Larson, and Nicholas Jennings

Matchings

Intensely studied class of combinatorial problems:

One-to-One: The stable marriage problem

One-to-Many: House allocation problems, assigning medical interns to hospitals



Many-to-Many: Most labor markets, friendships

Externalities

Also known as transaction spillovers

Third parties are influenced by transactions they did not agree to

Positive externalities: Education, immunization, environmental cleanup, research

Negative externalities: Environmental pollution, smoking, drinking and driving

Externalities in Matchings

Matchings are a natural model for studying externalities

Agents influenced not only by their own choices (matches), but also by the choices that other agents make

Existing work in economics assumes agents have a different utility for every state of the world

Can bounded rational agents reason about such games?

Succinct model of externalities in matchings
(polynomial-size preferences in the number of agents)

Model

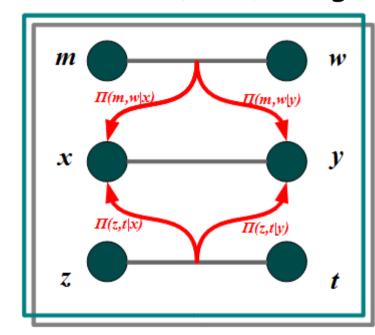
Let $G = (M, W, \Pi)$ be a matching game, where M and W are agents on the two sides of the market

Denote by $\Pi(m, w \mid z)$ the influence of match (m, w) on agent z

(if the match forms)

The utility of an agent z in matching A is:

$$u(z, A) = \sum_{(m,w)\in A} \Pi(m, w|z)$$



Model

Stability is a central question in game theoretic analyses of matchings

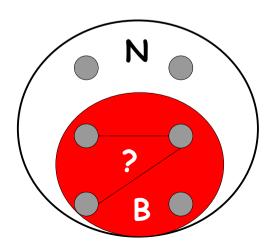
Given a game, which matchings are such that the agents don't have incentives to (i) cut existing matches or (ii) form new matches?

The stable outcomes depend on the solution concept used > This work: pairwise stability and the core

Solution Concept

Core Stability

Given a matching game $G = (M, W, \Pi)$, a matching A of G is core-stable if there does not exist a set of agents $B \subseteq N$, which can deviate and improve the utility of at least one member of B while not degrading the others.



Solution Concept

Deviation

Each member of a deviating coalition B must perform some action: either sever a match with an agent in N, or form a new match with an agent in B

Response

Given matching A and deviation A' of coalition B, the response $\Gamma(B, A, A')$ defines the reaction of the agents outside B upon the deviation

Solution Concept

Stability

A matching is stable if no coalition can deviate and improve the utility of at least one member while not degrading the other members in the response of $N \setminus B$

How will society respond to a deviation?

 The deviators need to estimate the response of the residual agents (which may be intractable)

Attitudes

Optimism: Deviators assume the best case reaction from the rest of the agents; hoping for the formation of matches good for the deviators and removal of all bad matches (attitude à la "All is for the best in the best of all the possible worlds")

Neutrality: No reaction (the deviators behave as if the others are not going to do anything about the deviation)

Pessimism: Worst case reaction (deviators assume the remaining agents will retaliate in the worst possible way)

Attitudes

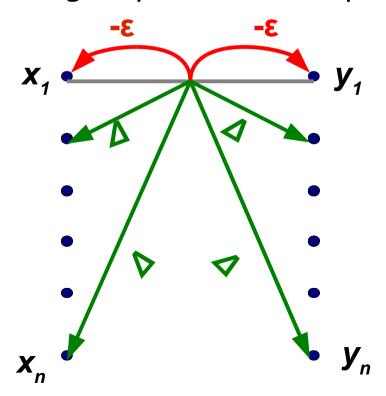
Many other definitions possible:

Contractual: Assume retaliation from agents hurt by the deviation, and no reaction from the rest

Recursive core (Koczy): when a coalition deviates, the residual agents react rationally (maximize their own payoff in the response)

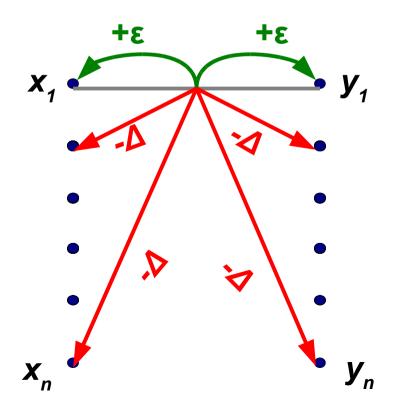
Empty Neutral Core

- The complete matching is Pareto optimal, but unstable
- The empty matching may be stable depending on ε , Δ

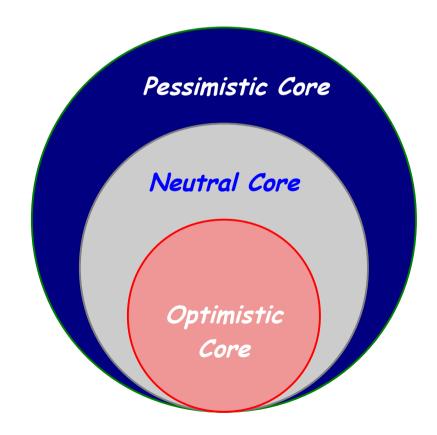


Empty Neutral Core (II)

• The complete matching is a tragic outcome for everyone; may be stable depending on ε , Δ



The cores are included in each other



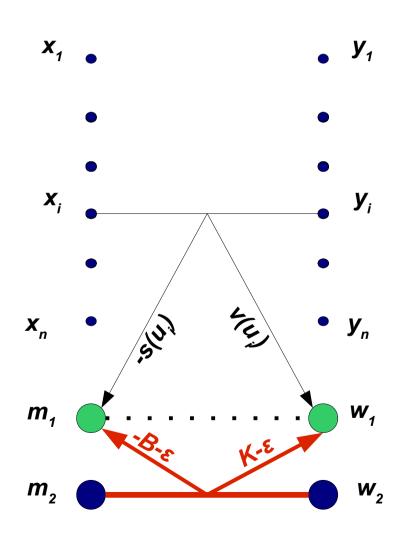
Core	Optimism	Neutrality	Pessimism
Membership	P	coNP-complete	coNP-complete
Nonemptiness	NP-complete	NP-hard	NP-hard

Theorem: Checking membership to the neutral core is coNP-complete.

Proof (sketch):

- > Show the complementary problem is NP-complete
- Fiven I = (U, s, v, B, K), construct game $G = (M, W, \Pi)$ and matching A such that A has a blocking coalition if and only if I has a solution

• $A = \{(m_2, w_2), (m_1), (w_1), (x_1), ..., (x_n), (y_1), ..., (y_n)\}$ has a blocking coalition $\leftrightarrow I$ has a solution



One-to-One Matchings

Known as the stable marriage problem

the Gale-Shapley algorithm used to compute stable outcomes

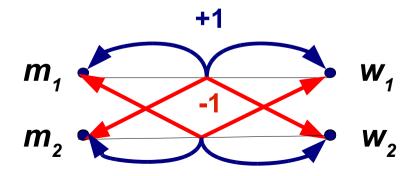
The Core with Externalities:

- Without externalities, the core is equivalent to the pairwise stable set
- The equivalence between pairwise stability and the core no longer holds with externalities

One-to-One Matchings with Externalities

• Moreover, under arbitrary Π values, even a pairwise stable solution does not always exist

Empty Neutral Pairwise Stable Set



One-to-One Matchings with Externalities

However, a pairwise stable matching under neutrality and pessimism always exists when Π is non-negative.

Proposition Problem Problem

One-to-One Matchings with Externalities

Pairwise Stable Set	Optimism	Neutrality	Pessimism
Membership	P	P	P
Nonemptiness	NP-complete	P	Р

Core	Optimism	Neutrality	Pessimism
Membership	P	coNP-complete	coNP-complete
Nonemptiness	NP-complete	NP-hard	NP-hard

Discussion

More refined solution concepts - interesting line of work in economics (e.g. the recursive core)

Externalities in social networks

- On platforms such as Facebook, agents are influenced by the matchings of others (friendships, subscriptions)
- Such cumulative effects can be expressed with additive models, but what is the right solution concept for bounded rational agents in such settings?