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It is common practice to estimate the volatility-growth link by specifying a standard
growth equation such that the variance of the error term appears as an explanatory
variable in this growth equation. The variance in turn is modelled by a second
equation. Hardly any of existing applications of this framework includes exogenous
controls in this second variance equation. Our theoretical findings suggest that the
absence of relevant explanatory variables in the variance equation leads to a biased
and inconsistent estimate of the volatility-growth link. Our simulations show that
this effect is large. Once the appropriate controls are included in the variance
equation consistency is restored. In short, we suggest that the variance equation
must include relevant control variables to estimate the volatility-growth link.

JEL codes: E32, O47
Keywords: volatility and growth, growth regression, endogenous variance

unbiased estimates

1 Introduction

The background – Understanding the link between volatility and growth is central to many
empirical analyzes. A prominent approach includes the variance of the error term of a growth
regression into the very same growth equation as an explanatory variable. This is the approach
pioneered by Ramey and Ramey (1995), henceforth RR. This approach has been extremely
influential and led to many valuable insights. Despite this huge success, endogeneity of growth
volatility has been seldom discussed.

The problem – Although it has been established that growth volatility is endogenous to de-
terminants of economic growth,2 empirical modeling of such dependence has not been discussed
in detail so far. We argue that failing to properly account for dependence of the error variance
on exogenous factors in this type of modelling may substantially bias the parameter estimates.
It has already been recognized by RR that the endogeneity of volatility is important. They

1Contact details of authors: Olaf Posch, Aarhus University, Department of Economics and Business,
Bartholins Allé 10, 8000 Århus C, phone +45.8942-1938, e-mail oposch@econ.au.dk. Andrey Launov and
Klaus Wälde, University of Mainz, Mainz School of Management and Economics, Jakob-Welder-Weg 4, 55131
Mainz, Germany, fax + 49.6131.39-23827, phone + 49.6131.39-22006, e-mail andrey.launov@uni-mainz.de,
klaus.waelde@uni-mainz.de. The first author appreciates financial support from the Center for Research in
Econometric Analysis of Time Series, CREATES, funded by The Danish National Research Foundation. We
thank Florian Heiss for discussions and comments.

2For a discussion of the literature on economic growth see Temple (1999). An elaborated investigation on
linking the endogeneity of macroeconomic volatility to weak institutions is in Acemoglu et al. (2003). Theoretical
analysis of the joint endogeneity of long-run growth and short-run volatility are undertaken in the ’natural
volatility’ literature (see e.g. Matsuyama, 1999, Francois Lloyed-Ellis, 2003, Wälde 2005 and Posch and Wälde,
2011). Fernández-Villaverde et al. (2011) document strong influence of volatility shocks on real variables like
output, consumption, investment and hours worked.



make the variance of the error term in the growth regression dependent on the squared residuals
taken from forecasting regressions for government expenditures. Their idea was to use forecast
errors as a measure of unobserved shocks. RR do not discuss, however, the correct specification
of variance endogeneity or consequences of its misspecification, leaving the issue of endogenous
volatility basically implicit.

The problem with the standard specification is the absence of explanatory variables in the
equation for the growth volatility. This suggests that more explanatory variables are needed in
the conditional variance equation than just forecast errors. Since the volatility term appears
among explanatory variables in the growth equation, omitted variables in the conditional vari-
ance equation potentially lead to correlation between explanatory variables and the error term
in the growth equation. This renders estimation of the feedback effect on economic growth cap-
tured by the variance term in the growth equation inconsistent. Inconsistence persists even if
there are no omitted variables in the growth equation and if all variables are measured without
error.

Our proposal – This note discusses an extension of the original RR model and specifies it
as a model of conditional heteroscedasticity in mean (henceforward CH-M). As in RR, there
is a growth equation that contains the volatility term and a variance equation. The extension
consists in explicit allowing for explanatory variables in the variance equation. Using these
additional explanatory variables, the RR approach will continue to remain a highly useful
framework to investigate the volatility-growth link.

We demonstrate theoretically that a bias arises in the CH-M model of output growth if
relevant control variables are omitted from the conditional variance equation. Thus, for exam-
ple, neglecting the RR prediction error of government expenditure shocks potentially leads to a
systematic bias in the estimated parameters of interest, particularly the one that links volatility
and growth. In a simulation based on an example borrowed from the literature (Posch 2011),
we show that the above bias is of economic importance for the volatility-growth nexus.

The literature – The most recent literature that follows the empirical setup of RR includes
Dawson et al. (2001), Imbs (2007), Edwards and Yang (2009), Ponomareva and Katayama
(2010), Posch (2011) and Posch and Wälde (2011), among others. Of these only Edwards and
Yang (2009), Posch (2011) and Posch and Wälde (2011) explicitly consider the conditional
volatility. Edwards and Yang (2009) analyze spatial differences in the influence of volatility
on growth, Posch (2011) and Posch and Wälde (2011) include tax rates and further controls.
None of these papers, however, addresses the source of the potential bias in the estimates of
the volatility-growth link and its quantitative importance. It is somewhat unfortunate that in
the rest of the literature modelling conditional variance has passed unnoticed, whereas exactly
this gives rise to the mentioned systematic bias of the estimated effect of volatility on growth.

Remarkably, Dawson et al. (2001) and Ponomareva and Katayama (2010) discuss a related
bias which appears in the empirical RR model if some explanatory variables in the growth
equation are measured with error. We show that the bias induced by omitted variables in the
conditional variance equation can be alternatively represented as an errors-in-variables bias,
where volatility term could be considered as a regressor measured with error. Thus both types
of biases have similar manifestation. Still an important difference in our case is that if some
relevant controls are omitted form the volatility equation the bias will arise even if all other
variables included in the growth regression are measured without error.

Our model may be viewed as a special case of the original ARCH-M model of Engle et al.
(1987), where the coefficients in front of autoregressive terms in the variance equation are set to
zero. As a consequence, only explanatory variables of a current period matter for the variance
(see Engle et al., 1987, equation 9, with α = 0). Without emphasizing the role of explanatory
variables in the variance equation explicitly, Engle et al. (1987) provide the framework that
accounts for the bias discussed here.
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The outline – The next section presents an augmented CH-M model. Section 3 provides
theoretical insights into the existence and the source of the bias. It also conducts Monte-Carlo
simulations in order to show the quantitative importance of the bias for the RR estimate of the
link between volatility and growth. Section 4 concludes this note.

2 A volatility-growth regression with controls in the con-

ditional variance equation

2.1 The regression setup

Consider the following extension of Ramey and Ramey (1995) borrowed from Posch (2011).
We specify the following growth equation and conditional variance equation,

∆yit = νσit + θXit + εit, where εit ∼ N(0, σ2
it), (1a)

log(σit) = αi + µt + βZit. (1b)

In these equations, ∆yit is the growth rate of output for country i in year t, σit is the standard
deviation of the error term in the growth equation; Xit is a vector of control variables (e.g.,
the Levine-Renelt variables); Zit is a vector of control variables (e.g., a subset of Xit); αi and
µt are country and time fixed effects; θ and β are vectors of coefficients. The key parameter of
interest in a volatility-growth analysis is ν, which links growth to volatility.

We will now show the importance of including additional controls in the conditional variance
equation in two ways. First, we will demonstrate analytically that omitted control variables
induce systematic bias into the maximum likelihood (ML) estimator of the volatility-growth
link ν. Second, we will confirm by simulation that this bias is large quantitatively.

2.2 Analytical result

• ML estimation with neglected controls in variance equation

Consider the model in (1a)-(1b), where for simplicity we drop the subscript i and coun-
try/time fixed effects, as they do not alter the argument. Let the standard deviation of the
error term in the correctly specified growth regression, σt, depend on explanatory variables as:
σt = exp{α + βZt}. Once dependence on Zt is neglected, the same standard deviation in the
misspecified model, say σ̃t, will be given just by: σ̃t = exp{α}. Keeping this in mind, growth
equation (1a) can be written as

∆yt = νσt ± νσ̃t + θXt + εt

= νσ̃t + θXt + (εt + ν[σt − σ̃t])

= νσ̃t + θXt + ε̃t,

where ε̃t ≡ εt + ν[σt − σ̃t] and εt is not correlated with Xt and Zt by assumption. Inserting for
both σt and σ̃t in this new error term ε̃t we get

ε̃t = εt + νeα[eβZt − 1].

Consider now estimation of the equation

∆yt = νσ̃t + θXt + ε̃t

3



where explicit dependence on Zt in the variance equation is omitted. Omitting the dependence
on Zt amounts to specifying the error term in this equation identically to that of the original
equation (1a), i.e.

∆yt = νσ̃t + θXt + ut, where ut ∼ N(0, σ̃t), (2a)

log(σ̃t) = α. (2b)

It is straightforward to show (see Appendix) that the maximum likelihood estimator of the
parameter ν in the misspecified model (2a)-(2b) has a form

ν̂ = T−1

T
∑

t=1

∆yt − θXt

σ̃t

Taking the expected value of ν̂ with respect to the distribution of the dependent variable in
the correctly specified model we obtain

E(ν̂) = ν T−1

T
∑

t=1

eβZt

as shown in the Appendix. This expected value is not equal to the true parameter ν unless
β = 0, meaning that ν̂ is biased. Furthermore, the bias does not disappear asymptotically, as

plim ν̂ = ν EeβZ ,

meaning that unless the true β is equal to zero ν̂ is inconsistent.3

Clearly, in a correctly specified model which explicitly considers Zt in the variance equation
the ML estimator of ν has all the standard properties.

• Alternative look at the source of the bias

The above demonstrated bias can also be interpreted as an errors-in-variables bias, where
growth volatility could be seen as a regressor measured with error. Assume that by some
chance we are able measure the volatility term in the data (e.g. via collecting multiple proxy
variables for growth volatility and creating a composite index). Though, our measure can
be only imperfect. Once the true measure, σt, in the growth equation is substituted by the
available imperfect measure, σ̃t, the error term immediately adjusts by the difference between
the two, where the difference is completely attributed to the measurement error. Since this
difference is a function of Zt, as the true volatility is the function of Zt, the new error term will
be correlated with Xt, namely

Cov (Xt, ε̃t) = Cov (Xt, εt) + Cov
(

Xt, νe
α[eβZt − 1]

)

= νeαCov
(

Xt, e
βZt

)

.

Whenever β = 0 orXt and Zt are not stochastically independent it follows that Cov (Xt, ε̃t) 6= 0.
Correlation between the error term and the regressors is a common source of the endogeneity
bias.

Also note that except of σt all other variables, namely Xt and Zt, are implicitly assumed to
be measured correctly, which is different from the analysis of Dawson et al. (2001).

3Repeating the steps outlined in the Appendix it is likewise possible to show that the ML estimate of θ in
the misspecified model is also biased and inconsistent.
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2.3 Monte-Carlo simulation

To provide quantitative support for the above demonstrated bias we simulate our model. As in
the analytical discussion we consider the model in (1a)-(1b) suppressing country and time fixed
effects for simplicity. Furthermore, again to simplify the simulation, we assume that Xt = Zt,
i.e. both growth rate of output and variance of this growth rate are determined by the same
set of explanatory variables. We assume Zt to follow a structure displaying time-variation of
the kind shown in Figure 1.4
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Figure 1 Our control variable Zt and the implied standard deviation σt of the residuals

Under these assumptions our model for the simulation becomes

∆yt = νσt + θZt + εt, where εt ∼ N(0, σ2
t ),

log(σt) = α + βZt.

For a set of predetermined parameters ν, θ, α, and β, conditional on the tax vector Zt and
the vector of variances σ2

t at any time t, we draw a sample of T = 1.000 errors εt from the
normal distribution N(0, σ2

t ). This allows us computing T values for ∆yt. Having done so, we
estimate the parameters of the above model by maximum likelihood using the simulated data.
The resulting estimates constitute the estimates from a correctly specified model, of which we
record the estimated value of ν. Next we consider the misspecified model ignoring Zt in the
variance equation. Estimating by maximum likelihood the misspecified model, we obtain what
we call biased parameters. Among these we again record the estimated value of the parameter
ν. We repeat this procedure N = 10.000 times, which results in N pairs of estimates of ν, first
element of this pair being the estimate from the correctly specified and second element - from
the misspecified model. After that we plot these estimates of ν against the true values of ν
chosen for the simulation. We do not vary the parameters α and β.

4This structure was originally motivated by understanding the effect of taxes and tax reforms on growth
and volatility. Such a tax vector could reflect three tax reforms over the length of time for which data is
available. Tax rates are constant between reforms. The resulting standard deviations in the lower panel show
that values are quantitatively reasonable. From a cross-sectional perspective, Zt (that would then be denoted
Zi) could reflect differences in tax rates accross countries i with tax rates that are time-invariant. Neglecting
the cross-sectional variation would then also bias estimates.
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Figure 2 Estimates for true and misspecified model for various v

Simulation results are summarized in fig. 2. The horizontal axis of this figure shows the
true values for ν used in the simulation. On the vertical axis we plot the estimates from the
correctly specified (asterisks) and misspecified (circles) models. In addition, we draw a 45◦

line to illustrate the equality to the true values of ν. We see that estimates from the correctly
specified model are all stretching along the 45◦ line, whereas estimates from the misspecified
model fail to replicate the 45◦ line by wide margin. The number of replications N has been
chosen such that confidence intervals around the estimated values are narrow enough to be
neglected. A similar picture emerges though with smaller sample sizes, say T = 100. Thus,
fig. 2 eloquently tells that if Z is omitted from the variance equation, the estimates of the
feedback effect of the volatility on growth can be substantially biased, confirming our analytical
result.5

3 Conclusion

Economic theory suggests that the degree of volatility of an economy is endogenous. Empirical
frameworks that do not account for this endogeneity imply that the estimate for the volatility-
growth link is biased. We show this both theoretically and by Monte-Carlo simulations. We
suggest that the growth-volatility link should only be estimated if the endogeneity of volatility
is sufficiently controlled for by including explanatory variables also in the variance equation.

5Although lying beyond the scope of present discussion, we also find that estimates of θ in the misspecified
model are biased even more than those of ν.
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4 Appendix - ML estimation of the growth-volatility pa-

rameter in the misspecified model

Derivation of the estimator – Consider the misspecified model (2a)-(2b). The individual con-
tribution to the likelihood is

ℓt =
1

σ̃t

√
2π

exp

{

−1

2

(

∆yt − (νσ̃t + θXt)

σ̃t

)2
}

,

and the total log-likelihood reads

logL = −T

2
log (2π)− T log (σ̃t)−

1

2

T
∑

t=1

(

∆yt − θXt

σ̃t

− ν

)2

.

Taking first order condition with respect to ν we get

∂ logL
∂ν

= −1

2

T
∑

t=1

∂

∂ν

[

(

∆yt − θXt

σ̃t

− ν

)2
]

=
T
∑

t=1

(

∆yt − θXt

σ̃t

− ν

)

.

Setting this result to zero the ML estimate ν̂ of the true parameter ν in the misspecified model
immediately follows

ν̂ = T−1

T
∑

t=1

∆yt − θXt

σ̃t

.

In this result, the rest of the parameters are for the moment kept as their true unknown values.

Properties of the estimator – Taking the expected value of ν̂ with respect to the distribution
of the dependent variable in the true model

∆yt = νσt + θXt + εt

we obtain

E (ν̂) = T−1

T
∑

t=1

E (∆yt)− θXt

σ̃t

= T−1

T
∑

t=1

E (νσt + θXt + εt)− θXt

σ̃t

= T−1

T
∑

t=1

[

νσt

σ̃t

+
E(εt)

σ̃t

]

= νT−1

T
∑

t=1

exp{α + βZt}
exp{α} = νT−1

T
∑

t=1

eβZt

This implies that E (ν̂) 6= ν unless β = 0 in the true model.
Furthermore, for any sequence of random variables {Zt}Tt=1 with appropriate conditions on

the moments (and possibly distribution) of Zt a corresponding law of large numbers applies
and

T−1

T
∑

t=1

eβZt
p→ E

(

eβZ
)

.

as T → ∞. From this follows that

plim ν̂ = ν EeβZ 6= ν

unless β = 0 in the true model.
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