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LOCAL BEHAVIOR OF DIFFUSIONS AT THE SUPREMUM

JAKOB D. THØSTESEN

Abstract. This paper studies small-time behavior at the supremum of a diffusion process. For
a solution to the SDE dXt = µ(Xt)dt+σ(Xt)dWt (where W is a standard Brownian motion) we

consider (ǫ−1/2(XmX+ǫt −X))t∈R as ǫ ↓ 0, where X is the supremum of X on the time interval

[0, 1] and mX is the time of the supremum. It is shown that this process converges in law to

a process ξ̂, where (ξ̂t)t≥0 and (ξ̂−t)t≥0 arise as independent Bessel-3 processes multiplied by

−σ(X). The proof is based on the fact that a continuous local martingale can be represented as
a time-changed Brownian motion. This representation is also used to prove a limit theorem for
zooming in on X at a fixed time. As an application of the zooming-in result at the supremum
we consider estimation of the supremum X based on observations at equidistant times.

1. Introduction

Differentiation is a central concept in classical analysis and it is useful in many areas with one
example being approximation. When dealing with stochastic processes, however, we rarely care
about differentiation as the paths of many typical processes are differentiable at few (if any) points.
This means that there is a need for a similar tool to handle the local behavior of such processes.

A differentiation-type concept for stochastic processes was introduced in [2] with the purpose
of describing local behavior at the supremum of the Brownian motion. This concept was revisited
in [7] where it was called zooming in. A stochastic process X starting at zero is said to satisfy the
zooming-in condition if

(1) (aǫXǫt)t≥0
fdd
→ (X̃t)t≥0 as ǫ ↓ 0,

where aǫ is a scaling function and X̃ is a non-trivial stochastic process. It is clear that this is
connected to differentiation (from the right) at time 0. Indeed, if t 7→ Xt is differentiable from the

right at 0 then the convergence holds with aǫ = ǫ−1 and X̃ being a line.
The related concept of zooming out was studied in [15]. While this sounds like quite a different

framework it is in fact possible to transfer many of ideas to the zooming-in setting. This includes
the study of the scaling function and the limit process. For more details see [7].

The zooming-in condition has proven to be a very useful regularity assumption in e.g. [5, 8, 9].
In those papers the zooming-in theory plays a large role in various discretization problems.

Naturally there is a big difference between zooming in at a fixed time and at a random time.
With X being a Lévy process satisfying the zooming-in assumption it was shown in [7] that one
may also zoom in at the supremum of X over the interval [0, 1]. The scaling is again aǫ and the law

of the limit process is related to X̃. This theory was used in [8] to derive limit theorems related
to estimation of the supremum of X in a high-frequency setting, and it was used in [5] to study
threshold exceedance for Lévy processes.

This paper presents limit results for zooming in at a fixed time and at the supremum of a
diffusion process. Estimation of the supremum is studied as an application of the limit theory.
The approach is based on the fact that a continuous local martingale can be represented as a
time-changed Brownian motion. For zooming in at the supremum this lets us build on an existing
zooming-in result for the Brownian motion.

All relevant definitions and prerequisites are contained in §2. In §3 the main results are pre-
sented. Generality of the results and possible extensions are covered in §4, and finally the most
technical proofs are found in §5.

2020 Mathematics Subject Classification. 60J60, 60F17.
Key words and phrases. Diffusion process; functional limit theorem; small-time behavior; stable convergence;

discretization error; Bessel process.

1

http://arxiv.org/abs/2111.09048v1
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2. Definitions and prerequisites

2.1. The setup. Consider the SDE

(2) dXt = µ(Xt)dt+ σ(Xt)dWt and X0 = x0,

where W is a standard Brownian motion. We assume that there exists a weak solution (X,W ) to
(2), defined on a filtered probability space (Ω,F , (Ft),P) such that X is (Ft)-adapted and W is an
(Ft)-Brownian motion. We assume that (Ft) satisfies the usual conditions. In this paper we will
encounter several (Ft)-adapted processes which are almost surely continuous, X and W being the
first examples. Since (Ft) is complete we may and will assume that these processes are continuous
for all ω ∈ Ω.

We need some regularity assumptions on µ and σ which are stated in Assumption A below.
Here, the range of X is the set of points x ∈ R for which P(Xt = x for some t ∈ [0,∞)) > 0.
Note that the positivity in assumption (ii) is quite standard and guarantees the presence of some
amount of noise at any time. This is important for zooming in since the presence of a Brownian
motion affects the scaling function. For example, if X is a Brownian motion plus a linear drift then
aǫ ∼ c1ǫ

−1/2 (for some c1 > 0), and if X is just a linear drift then aǫ ∼ c2ǫ
−1 (for some c2 > 0),

see [7, Thm. 2].

Assumption A.
(i) The function µ : R→ R is locally bounded.
(ii) The function σ : R→ [0,∞) is continuous and strictly positive on the range of X .

We let X := supt∈[0,1]Xt denote the supremum of X over the unit interval, and we denote the

time of the ultimate supremum by mX := sup{t ∈ [0, 1] |Xt = X}. We then define the pre- and
post-supremum processes, X←− and X−→, by

X←−t :=

{

XmX−t −X if 0 ≤ t < mX ,

† if t ≥ mX ,
and X−→t :=

{

XmX+t −X if 0 ≤ t < 1−mX ,

† if t ≥ 1−mX .

2.2. Path space and topology. The processes appearing in this paper are viewed as random
variables taking values in the measurable space (D[0,∞),D), where D[0,∞) is the space of real-
valued càdlàg functions defined on [0,∞) and D is the Borel σ-algebra induced by the Skorokhod
topology. A standard reference treating this space is [4, §16].

For convergence in distribution it is often sufficient to consider the restrictions of processes to
intervals of the form [0, T ] for T > 0. Consider D[0,∞)-valued random variables (i.e. stochastic

processes) X,X1, X2, . . . . Then Xn d
→ X if and only if (Xn

t )t∈[0,T ]
d
→ (Xt)t∈[0,T ] for all T > 0

where X is almost surely continuous at T , see e.g. [4, Thm. 16.7]. Here the restrictions are seen
as random variables in D[0, T ] (the space of càdlàg functions on [0, T ]).

2.3. The central representation. Suppose for a moment that X solves the SDE (2) with x0 = 0
and µ ≡ 0. Then X is a continuous local (Ft)-martingale starting at zero. We denote the quadratic
variation of X by [X ] and recall that it is almost surely given by

[X ]t =

∫ t

0

σ2(Xs) ds, t ≥ 0.

Note that [X ] is continuous and strictly increasing and denote its inverse by τ . We define a new
filtration (Gt) by Gt := Fτt . A standard result (see e.g. [11, Thm. 19.4]) gives the existence of a

Brownian motion W̃ with respect to a standard extension (Ĝt) of (Gt) (see [11, p. 420]) such that

X = (W̃[X]t)t≥0 a.s. Furthermore, for any s ≥ 0 the random variable [X ]s is a (Gt)t≥0-stopping
time.

2.4. Stable convergence. A central concept in this paper is the notion of stable convergence
which was originally introduced in [18]. Later papers which are also of interest include [1, 16]. In
this subsection we present only the results which are relevant for this paper.

We consider a probability space (Ω,F ,P) supporting a sequence of random variables (Xn) taking

values in some Polish space. We say that Xn converges stably to X (written Xn
st
→ X) defined on
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an extension (Ω̃, F̃ , P̃) of the space if

(3) E[f(Xn)Z]→ Ẽ[f(X)Z]

for all bounded continuous functions f and all bounded F -measurable Z.
The extension of (Ω,F ,P) is a product space (Ω̃, F̃) = (Ω × Ω′,F ⊗ F ′) equipped with a

probability measure P̃ which satisfies P̃(A × Ω′) = P(A) for any A ∈ F . A random variable Z
defined on (Ω,F ,P) becomes a random variable on the extension by defining Z(ω, ω′) := Z(ω). We
often need the extension to support a random variable X which is independent of F . In that case
we let (Ω′,F ′,P′) be a probability space on which X can be defined. As before X can be viewed

as a random variable on (Ω × Ω′,F ⊗ F ′), and taking P̃ = P⊗ P
′ gives the desired independence.

In this case, and when Xn
st
→ X , we sometimes say that the convergence is mixing. This concept

was first introduced in [17].
In order to work with stable convergence we need a few key results.

Lemma 1. Assume that Xn
st
→ X. Then we have the following:

(i) If Y, Y1, Y2, . . . are random variables (taking values in some Polish space) on (Ω,F ,P) and

Yn
P
→ Y , then (Xn, Yn)

st
→ (X,Y ).

(ii) If g is a Borel-measurable function taking values in a Polish space and g is almost surely

continuous at X then g(Xn)
st
→ g(X).

Proof. See e.g. [6, Thm. 3.18]. �

If H ⊆ F is a sub-σ-algebra and (3) is only known to hold for H-measurable Z we say that Xn

converges H-stably to X (written Xn
H−st
→ X). The following basic lemma shows that sometimes

stable convergence can be obtained just by proving H-stable convergence for a suitable sub-σ-
algebra H. This trick is used in e.g. the proof of [10, Thm. 4.3.1].

Lemma 2. Let H ⊆ F be a sub-σ-algebra. Assume that each Xn is H-measurable, X is indepen-

dent of F and Xn
H−st
→ X. Then Xn

st
→ X.

Proof. We must verify (3) for all bounded continuous functions f and all bounded F -measurable

Z. Since Xn is H-measurable and Xn
H−st
→ X it holds that

E[f(Xn)Z] = E[f(Xn)E[Z | H]]→ Ẽ[f(X)E[Z | H]].

Finally the assumed independence yields

Ẽ[f(X)E[Z | H]] = Ẽ[f(X)]Ẽ[Z] = Ẽ[f(X)Z].

�

It is often useful to work with equivalent definitions of stable convergence.

Lemma 3. For a sub-σ-algebra H ⊆ F the following statements are equivalent:

(i) Xn
H−st
→ X.

(ii) (Xn, Y )
H−st
→ (X,Y ) for any H-measurable Y taking values in some Polish space.

(iii) (Xn, Y )
d
→ (X,Y ) for any H-measurable Y taking values in some Polish space.

(iv) (Xn, 1F )
d
→ (X, 1F ) for any F ∈ E, where E ⊆ H is closed under finite intersections and

further satisfies Ω ∈ E and σ(E) = H.

Proof. For equivalence of (i)-(iii) see [16, Prop. 1], and for equivalence of (i) and (iv) see [6,
Thm. 3.17]. �

Independence plays a large role for convergence of joint distributions. The following lemma
shows that joint stable convergence can also be obtained under certain independence assumptions.

Lemma 4. Let (Xn), (Yn) be independent sequences of random variables, and let X,Y be inde-

pendent random variables such that X and Y are independent of F , Xn
st
→ X and Yn

st
→ Y . Then

(Xn, Yn)
st
→ (X,Y ).
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Proof. Let A = σ({Xn | n ∈ N}), B = σ({Yn | n ∈ N}) and H = σ(A ∪ B). According to Lemma 2
it is sufficient to prove H-stable convergence. For A ∈ A and B ∈ B we see that

(Xn, 1A, Yn, 1B)
d
→ (X, 1A, Y, 1B)

due to the assumed independence. Hence, (Xn, Yn, 1A∩B)
d
→ (X,Y, 1A∩B). The H-stable conver-

gence follows since condition (iv) in Lemma 3 is satisfied with E being the collection of sets on the
form A ∩B where A ∈ A and B ∈ B. �

3. Main results

3.1. Zooming in at a fixed time. We begin with a limit theorem that formalizes the intuitive
understanding of a diffusion process. Namely that the local behavior of X at a fixed time T > 0
is that of a scaled Brownian motion. To simplify we consider the time point T = 1.

For ǫ > 0 and t ∈ R we let X
(ǫ)
t := ǫ−1/2(X1+ǫt−X1). Consider further two standard Brownian

motions U (1) and U (2) defined on an extension of (Ω,F ,P) which are independent of each other
and of F .

Theorem 5. It holds that
(

(X
(ǫ)
−t )t≥0, (X

(ǫ)
t )t≥0

) st
→

(

σ(X1)U
(1), σ(X1)U

(2)
)

as ǫ ↓ 0.

Dealing with (X
(ǫ)
t )t≥0 is fairly simple as we look forward in time. Looking backwards in time

is generally harder and proving the convergence of (X
(ǫ)
−t )t≥0 is indeed rather technical. The proof

of Theorem 5 is deferred to §5.1.
Looking backwards in time may be difficult but it is quite useful. The following result is very

intuitive in addition to being necessary for proving Theorem 7 below, and proving it is now trivial.

Corollary 6. Almost surely mX 6= 1.

Proof. Let A ⊆ D[0,∞) be the set of functions f in D[0,∞) with f(t) ≤ 0 for all t ∈ [0, 1). Using
[4, Thm. 16.1] it is easy to verify that A is closed in the Skorokhod topology. It follows from
Theorem 5 and the Portmanteau theorem that

P(mX = 1) ≤ lim sup
ǫ↓0

P((X
(ǫ)
−t )t≥0 ∈ A) ≤ P̃((σ(X1)U

(1)
t )t≥0 ∈ A) = 0.

�

3.2. Zooming in at the supremum. The local behavior of X at time 1 is described by the
zooming-in result in Theorem 5. In a similar fashion we want to describe the local behavior at the
supremum through a zooming-in result. It is well-known (see e.g. [3]) that the negated pre- and
post-supremum processes for a Brownian motion are two independent Bessel-3 processes (killed at
certain random times). With this in mind the following result is somewhat intuitive.

Theorem 7. Let B(1) and B(2) be two independent Bessel-3 processes defined on an extension of
(Ω,F ,P) such that both processes are independent of F . Then it holds that

(4)
(

(ǫ−1/2X←−ǫt)t≥0, (ǫ
−1/2X−→ǫt)t≥0

) st
→

(

− σ(X)B(1),−σ(X)B(2)
)

as ǫ ↓ 0.

The proof of Theorem 7 is deferred to §5.2.

3.3. Estimation of the supremum. As an application of Theorem 7 we consider a high-frequency
setting in which the process X is observed on the set of times ǫ(N0+U)∩[0, 1] for some small ǫ > 0,
where U is a standard uniform defined on an extension of the space such that it is independent of
F and B(1), B(2). The objective is to estimate the supremum X over [0, 1]. To avoid constantly
having to intersect with the unit interval we consider X as being restricted to this interval.

We take the basic estimator M (ǫ) := supt∈ǫ(N0+U) Xt. The following result establishes the

convergence rate ǫ−1/2.

Proposition 8. For all ǫ > 0 it holds that

0 ≥ ǫ−1/2(M (ǫ) −X) ≥ ǫ−1/2X−→ǫ{U−mX/ǫ},

where {U −mX/ǫ} is the fractional part of U −mX/ǫ.
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Furthermore, there is stable convergence of the lower bound:

ǫ−1/2X−→ǫ{U−mX/ǫ}
st
→ −σ(X)B

(2)
U .

Proof. Observe that

ǫ−1/2(M (ǫ) −X) = sup
i∈N0

ǫ−1/2(Xǫ(i+U) −X) = sup
i∈Z

ǫ−1/2(Xǫ(i+{U−mX/ǫ})+mX −X)

for all ǫ > 0. We can get a lower bound by taking a specific i instead of taking the supremum over
Z. With i = 0 we get the claimed lower bound.

By conditioning one sees that for all ǫ > 0 the fractional part Uǫ := {U −mX/ǫ} is a standard
uniform independent of F and B(1), B(2). In combination with Theorem 7 and [19, Prop. 13.2.1]
we obtain the convergence of the lower bound. �

Remark 9. The lower bound in Proposition 8 is somewhat conservative. Indeed, in the proof we
see that the discretization error can be written as supi∈Z ǫ

−1/2(Xǫ(i+{U−mX/ǫ})+mX −X). Looking

to Theorem 7 it is expected that this quantity will converge to supi∈Z ξ̂i+U , where ξ̂t = −σ(X)B
(1)
−t

for t < 0 and ξ̂t = −σ(X)B
(2)
t for t ≥ 0. However, this is not straight-forward to prove. The issue

is that taking the supremum over an unbounded set of times is not continuous. This was solved
in [5, App. B] where the authors corrected the proof of [7, Thm. 5]. In those papers X is a Lévy
process satisfying the zooming-in condition. The approach is not directly applicable here because
it is based on results known only for Lévy processes.

It is perfectly valid to ask why we choose to sample at times ǫ(i+U) rather than ǫi for i ∈ N0.

In the latter case one would consider the estimator M̃ (ǫ) := supt∈ǫN0
Xt. For this estimator it holds

that

ǫ−1/2(M̃ (ǫ) −X) = sup
i∈Z

ǫ−1/2(Xǫ(i+{−mX/ǫ})+mX −X)

for any ǫ > 0. This gives the lower bound ǫ−1/2X−→ǫ{−mX/ǫ}. In order to obtain a limit theorem

for this quantity we need to know what happens to {−mX/ǫ} as ǫ ↓ 0. By the classical result of
[12] it is known that {−mX/ǫ} converges to the standard uniform distribution if mX has a density
wrt. the Lebesgue measure. As seen in Proposition 8 we are able to avoid such considerations by
translating the sampling times by ǫU .

4. Further comments

4.1. Generality of the results. Theorem 5 describes zooming in at time 1. Naturally there is
nothing special about the time 1 so the result also holds if we zoom in at some other fixed time
T > 0. In that case one simply replaces σ(X1) by σ(XT ) in the limit. The time point 1 is chosen
only to simplify notation.

In the same way there is nothing special about the time interval [0, 1] in the formulation of
Theorem 7. This interval can be replaced by [T1, T2] where 0 ≤ T1 < T2 < ∞ are fixed. In the
formulation of the result one will then have to define X := supt∈[T1,T2]Xt.

4.2. Extending to other classes of stochastic processes. The approach used to prove The-
orem 5 and Theorem 7 is based on representing the local martingale part of X as a time-changed
Brownian motion. The time-change is differentiable and this lets us apply zooming-in results for
the Brownian motion to obtain corresponding results for X .

It is possible to extend the result about zooming in at the supremum to other classes of stochastic
processes. In [7] this was done for any Lévy process satisfying the zooming-in condition (1). With
the approach used to prove Theorem 7 it is likely that this result can be used to prove limit results
for zooming in at the supremum of time-changed Lévy processes. Below are two examples where
this appears to be do-able.

Example 10.
(A) Let X be a positive 1/α-self-similar Markov process (pssMp) starting at some value x > 0.
The classical result of [14] tells us that there exists a Lévy process ξ such that

Xt = x exp(ξτ(tx−α)), t ≥ 0,



6 J. D. THØSTESEN

where τ(tx−α) = inf{s > 0 |
∫ s

0 exp(αξu) du ≥ tx−α}. The key point is that Xt is obtained by
time-changing a Lévy process and applying a strictly increasing and differentiable function. Note
also that the time-change is differentiable. The last ingredient is that ξ must satisfy the zooming-in
condition. This is completely characterized in [7, Thm. 2] in terms of the characteristics of ξ. Note
also that one must pay special attention to a possible jump at the time of supremum.

(B) Let X be a continuous-state branching process. Then there exists (see e.g. [13, Thm. 10.2])
a Lévy process ζ such that

Xt = ζθ(t)∧τ−

0

, t ≥ 0,

where τ−0 = inf{s > 0 |ζs < 0} and θ(t) = inf{s > 0 |
∫ s

0
ζ−1
u du > t}. We note that the time-change

is not as well-behaved as for the class of pssMps. For example, t 7→ θ(t) is not differentiable
everywhere. As a consequence one will again have to be particularly aware of any jump at the
supremum.

5. Proofs

5.1. Proof of Theorem 5. As in the formulation of Theorem 5 we let (U (1), U (2)) denote a pair
of independent standard Brownian motions, defined on an extension of (Ω,F ,P) such that they
are also independent of F .

We may write Xt as

Xt = x0 +At +Mt, t ≥ 0,

where A is a continuous and (Ft)-adapted process with bounded variation, M is a continuous
(Ft)-local martingale and A0 = M0 = 0 a.s. We see that

X
(ǫ)
t = ǫ−1/2(X1+ǫt −X1) = ǫ−1/2(A1+ǫt −A1) + ǫ−1/2(M1+ǫt −M1)

for all t ≥ −1/ǫ. We treat each term from the right-hand side separately.

Note that At =
∫ t

0
µ(Xs) ds for all t ≥ 0 a.s. Since µ and X are both locally bounded we

immediately find that

sup
t∈[−T,T ]

ǫ−1/2|A1+ǫt −A1| ≤ 2T ǫ1/2 sup
t∈[1−ǫT,1+ǫT ]

|µ(Xt)| → 0

a.s. as ǫ ↓ 0 for any T > 0.
Below in the proof of Theorem 7 it is necessary to deal with the drift differently. The same

approach could be used here, however it is the author’s belief that the calculation above is more
illustrative since it clearly shows that the drift vanishes due to the ǫ−1/2 scaling.

It remains to show that

(5)
(

(ǫ−1/2(M1−ǫt −M1))t≥0, (ǫ
−1/2(M1+ǫt −M1))t≥0

) st
→

(

σ(X1)U
(1), σ(X1)U

(2)
)

.

To do so we will represent M as a time-changed Brownian motion. Let (FM
t ) denote the completed

natural filtration generated by M , let τ denote the inverse of [M ], and define GMt = FM
τt . Now, as

in §2.3 a standard result gives the existence of a Brownian motion W̃ with respect to a standard
extension (ĜMt ) of (GMt ) such that M = (W̃[M ]t)t≥0 a.s. Recall that [M ]s is a (GMt )-stopping time
for any s ≥ 0. Finally we note that the quadratic variation of M is given by

[M ]t = [X ]t =

∫ t

0

σ2(Xs) ds, t ≥ 0

almost surely.
The next step in the proof of Theorem 5 is Lemma 11 below which allows for zooming in on W̃

from the right. Instead of simply zooming in at time 1 we generalize to zooming in at 1− ǫR with
R ≥ 0 since we will need this in the proof of Lemma 12 below. This slight generalization requires
very little extra effort.

Lemma 11. For any R ≥ 0 it holds that

(6) (ǫ−1/2(W̃[M ]1−ǫR+ǫt − W̃[M ]1−ǫR
))t≥0

st
→ U,

where U is a standard Brownian motion defined on an extension of (Ω,F ,P) such that U is inde-
pendent of F .
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Proof. We fix R ≥ 0 and recall that [M ]1−ǫR is a (GMt )-stopping time. It follows that the left-hand
side of (6) is a standard Brownian motion for any ǫ > 0 so the convergence in distribution is trivial.

Now, let A denote the σ-algebra generated by the process W̃ ′ := (W̃[M ]1+t − W̃[M ]1)t≥0. The
first step is proving A-stable convergence. It is sufficient to show that

(7)
(

(ǫ−1/2(W̃[M ]1−ǫR+ǫt − W̃[M ]1−ǫR
))t∈[0,T ], (W̃

′
ti)i=1,...,k

) d
→

(

(Ut)t∈[0,T ], (W̃
′
ti)i=1,...,k

)

for any T > 0, k ∈ N and 0 < t1 < . . . < tk. To this end define a
(ǫ)
i := W̃[M ]1+ti − W̃[M ]1+ǫT and

b
(ǫ)
i := W̃[M ]1+ǫT − W̃[M ]1 . Then W̃ ′

ti = a
(ǫ)
i + b

(ǫ)
i , b

(ǫ)
i → 0 a.s. as ǫ ↓ 0, and for ǫ ∈ (0, t1/T ) we

see that a
(ǫ)
i is independent of (W̃t)t∈[0,[M ]1−ǫR+ǫT ]. Hence,

(

(ǫ−1/2(W̃[M ]1−ǫR+ǫt − W̃[M ]1−ǫR
))t∈[0,T ], (a

(ǫ)
i )i=1,...,k

) d
→

(

(Ut)t∈[0,T ], (W̃
′
ti )i=1,...,k

)

.

The convergence in (7) follows immediately. This establishes (6) with
st
→ replaced by

A−st
→ .

We let H := σ(GM[M ]1
∪A) = σ(FM

1 ∪A) and note that the left-hand side in (6) is H-measurable.

Thus, proving H-stable convergence automatically yields F -stable convergence by Lemma 2. We
note that FM

1 = σ(
⋃

δ>0 F
M
1−δ) since M(ω) is continuous for all ω ∈ Ω (recall the considerations

in the beginning of §2.1). According to Lemma 3 it is sufficient to show that
(

(ǫ−1/2(W̃[M ]1−ǫR+ǫt − W̃[M ]1−ǫR
))t≥0, 1A, 1F

) d
→ (U, 1A, 1F )

for any δ > 0, F ∈ FM
1−δ and A ∈ A. Since the first two components on the left-hand side are

independent of 1F for small enough ǫ this is a trivial consequence of the A-stable convergence.
This concludes the proof. �

We proceed by proving the following lemma, stating that we can zoom in on W̃ at time [M ]1.
The proof follows the same strategy as the proof of [9, Thm. 3].

Lemma 12. As ǫ ↓ 0 it holds that

(8)
(

(W̃
(ǫ)
−t )t≥0, (W̃

(ǫ)
t )t≥0

) st
→ (U (1), U (2)),

where W̃
(ǫ)
t := ǫ−1/2(W̃[M ]1+ǫt − W̃[M ]1).

Proof. There are two immediate things to note. Firstly, the convergence (W̃
(ǫ)
t )t≥0

st
→ U (2) is

nothing more than the case R = 0 in Lemma 11. Secondly, since (W̃
(ǫ)
−t )t≥0 and (W̃

(ǫ)
t )t≥0 are

independent for all ǫ > 0 it is sufficient, according to Lemma 4, to show that the former converges
stably to U (1). Again it is sufficient to show stable convergence of the process restricted to the
time interval [0, T ] for all T > 0.

For any R ≥ 0 we have the almost sure convergence ǫ−1([M ]1 − [M ]1−ǫR) → Rσ2(X1) =: s.
Given T > 0 we can pick R such that s > T with probability arbitrarily close to 1. With

Y
(ǫ)
t = ǫ−1/2(W̃[M ]1−ǫR+ǫt − W̃[M ]1−ǫR

) we then write

(9) ǫ−1/2(W̃[M ]1−ǫt − W̃[M ]1) = −(Y
(ǫ)
ǫ−1([M ]1−[M ]1−ǫR) − Y

(ǫ)
ǫ−1([M ]1−[M ]1−ǫR−ǫt)).

That is, on {s > T } the increment of ǫ−1/2W̃ over [[M ]1− ǫt, [M ]1] can be viewed as the increment
of Y (ǫ) over [ǫ−1([M ]1 − [M ]1−ǫR − ǫt), ǫ−1([M ]1 − [M ]1−ǫR)] (for small enough ǫ > 0).

Almost surely ǫ−1([M ]1− [M ]1−ǫR− ǫt)→ s− t uniformly for t ∈ [0, T ]. By combining this with
(9), Lemma 11, continuity of subordination (see [19, Thm. 13.2.2]) and Lemma 1 we find that

(10) E[1{s>T}f((W̃
(ǫ)
−t )t∈[0,T ])Z]→ Ẽ[1{s>T}f(−(Us − Us−t)t∈[0,T ])Z]

for all bounded continuous f and all bounded F -measurable Z, where U is a standard Brownian
motion defined on an extension of (Ω,F ,P) such that U is independent of F and independent of

U (2). We conclude by noting that the limit in (10) is equal to Ẽ[1{s>T}f((U
(1)
t )t∈[0,T ])Z], where

U (1) is a standard Brownian motion defined on an extension of (Ω,F ,P), independent of F and
independent of U (2). �

We are now ready to finish the proof of Theorem 5 which we have reduced to proving the
convergence

(

(M
(ǫ)
−t )t≥0, (M

(ǫ)
t )t≥0

) st
→

(

σ(X1)U
(1), σ(X1)U

(2)
)

,



8 J. D. THØSTESEN

where M
(ǫ)
t := ǫ−1/2(M1+ǫt −M1).

Firstly, we have the almost sure convergence

σ2
ǫ (t) := ǫ−1([M ]1+ǫt − [M ]1)→ tσ2(X1).

This convergence is uniform in t over compact intervals so we get the a.s. functional convergence
(

(σ2
ǫ (−t))t≥0, (σ

2
ǫ (t))t≥0

)

→
(

(−tσ2(X1))t≥0, (tσ
2(X1))t≥0

)

,

which we may add to the stable convergence in (8).
Now, for t ∈ R we can write

M
(ǫ)
t = ǫ−1/2(M1+ǫt −M1) = ǫ−1/2(W̃[M ]1+ǫt

− W̃[M ]1) = W̃
(ǫ)
σ2
ǫ
(t),

where W̃ (ǫ) is defined in Lemma 12. By piecing the above together we obtain the convergence
(

(M
(ǫ)
−t )t≥0, (M

(ǫ)
t )t≥0

) st
→

(

(U
(1)
tσ2(X1)

)t≥0, (U
(2)
tσ2(X1)

)t≥0

)

=
(

σ(X1)Ũ
(1), σ(X1)Ũ

(2)
)

,

where Ũ
(i)
t := σ−1(X1)U

(i)
tσ2(X1)

. Again we use continuity of subordination (see [19, Thm. 13.2.2]).

We conclude by remarking that (Ũ (1), Ũ (2)) is again a pair of independent standard Brownian
motions, also independent of F .

5.2. Proof of Theorem 7. We begin by establishing that we may assume that X starts at zero
and has no drift. As in Theorem 7 (B(1), B(2)) denotes a pair of independent Bessel-3 processes,
defined on an extension of (Ω,F ,P) such that they are also independent of F .

Following [11, Ch. 33] we let p be the function given by

p′(x) = exp

{

−2

∫ x

x0

(µ/σ2)(u) du

}

and p(x0) = 0.

Note that this definition of p has a problem at a value x if the function µ/σ2 is not integrable over
the interval [x0, x] (or [x, x0] depending on which is larger). However, if x is in the range of X then
µ/σ2 is bounded on [x0, x] (or [x, x0]) due to Assumption (A). As we will only need to evaluate p
at such points we need not worry.

Now, let Yt := p(Xt) for t ≥ 0. The choice of p has two particularly useful implications. Firstly,
p is strictly increasing so Y = p(X) and mX = mY . Secondly, Y is a diffusion process solving the
SDE

(11) dYt = σ̃(Yt)dWt and Y0 = 0,

where σ̃ = (σp′) ◦ p−1.
Now we are able to prove the following lemma which is an essential step in proving Theorem 7.

Lemma 13. It is sufficient to prove Theorem 7 under the assumption that x0 = 0 and µ ≡ 0.

Proof. Assume that Theorem 7 holds for any diffusion process which starts at zero, has no drift
and satisfies Assumption A.

We consider the transformation Y := p(X) introduced above. In addition to solving the SDE
(11) we further note that Y satisfies Assumption A. So by our initial assumption there is the
convergence

(

(ǫ−1/2Y
←−ǫt)t≥0, (ǫ

−1/2Y
−→ǫt)t≥0

)

st
→ (−σ̃(Y )B(1),−σ̃(Y )B(2)),

where Y←− and Y−→ are pre- and post-supremum processes defined for the interval [0, 1]. Using the

mean value theorem we find that

ǫ−1/2X
−→ǫt = ǫ−1/2(p−1)′(cǫ(t))Y−→ǫt,

where cǫ(t) is between YmX+ǫt and Y . One easily verifies that (p−1)′(cǫ(·)) converges (in the

Skorokhod topology) to the constant function (p−1)′(Y ). Hence,

(ǫ−1/2(p−1)′(cǫ(t))Y−→ǫt)t≥0
st
→ −(p−1)′(Y )σ̃(Y )B(2) = −σ(X)B(2),

where the final identity comes from the definition of σ̃. Obviously we can do similar calculations
for the pre-supremum process. Hence,

(

(ǫ−1/2X
←−ǫt)t≥0, (ǫ

−1/2X
−→ǫt)t≥0

)

st
→ (−σ(X)B(1),−σ(X)B(2)). �
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For the rest of this subsection we assume that x0 = 0 and µ ≡ 0. Then, as in §2.3, we can write
Xt = W̃[X]t where W̃ is a standard Brownian motion and [X ] is the quadratic variation of X . To

proceed we need the following result about zooming in at the supremum of W̃ , defined for the
stochastic interval [0, [X ]1]. This result is essentially a direct consequence of [7, Cor. 2] except for
one technical complication. That paper works only on the canonical path space and since stable
convergence is not only concerned with laws but also very much with the probability space the
result does not apply directly. Instead we provide a short proof which fixes this problem.

Lemma 14. It holds that

(12)
(

(ǫ−1/2W̃
←−ǫt)t≥0, (ǫ

−1/2W̃
−→ǫt)t≥0

)

st
→ (−B(1),−B(2)),

where W̃←− and W̃−→ are the pre- and post-supremum processes defined for the interval [0, [X ]1].

Proof. For each T > 0 we let W̃←−
(T ) and W̃−→

(T ) denote the pre- and post-supremum processes for

W̃ , defined for the interval [0, T ]. According to [7, Thm. 4] there is the stable convergence
(

(ǫ−1/2W̃←−
(T )
ǫt )t≥0, (ǫ

−1/2W̃−→
(T )
ǫt )t≥0

)

H−st
→ (−B(1),−B(2)),

where H is the σ-algebra generated by W̃ . Since the left-hand side is obviously H-measurable the
H-stable convergence extends to F -stable convergence by Lemma 2.

At this point it remains to extend to the case T = [X ]1. Corollary 6 tells us that the supremum

of W̃ over the interval [0, [X ]1] is almost surely attained strictly before time [X ]1. Using this the
convergence in (12) follows via the same arguments as in the proof of [7, Cor. 2]. �

Finally we are ready to prove Theorem 7 in the case with x0 = 0 and µ ≡ 0. As in Lemma
14 we let W̃

←−
and W̃
−→

denote the pre- and post-supremum processes for W̃ defined for the interval

[0, [X ]1].

Since [X ]t =
∫ t

0
σ2(Xs) ds it follows immediately that

σ2
ǫ (t) := ǫ−1([X ]mX+ǫt − [X ]mX )→ tσ2(X)

a.s. for any t ∈ R since σ is continuous on the range of X . We note that this convergence is uniform
on compact sets. Hence we have the almost sure functional convergence

(13)
(

(σ2
ǫ (−t))t≥0, (σ

2
ǫ (t))t≥0

)

→
(

(−tσ2(X))t≥0, (tσ
2(X))t≥0

)

,

which we may add to the stable convergence in (12). We further note that

ǫ−1/2X
−→ǫt = ǫ−1/2(XmX+ǫt −X) = ǫ−1/2(W̃[X]

mX+ǫt
− W̃[X]

mX
) = ǫ−1/2W̃

−→ǫσ2
ǫ
(t)

for each t ≥ 0. Similarly, it holds that ǫ−1/2X
←−ǫt = ǫ−1/2W̃

←−−ǫσ2
ǫ
(−t) for all t ≥ 0. By continuity of

subordination (see [19, Thm. 13.2.2]) we have the convergence
(

(ǫ−1/2X←−ǫt)t≥0, (ǫ
−1/2X−→ǫt)t≥0

)

st
→

(

(−B
(1)

tσ2(X)
)t≥0, (−B

(2)

tσ2(X)
)t≥0

)

=
(

−σ(X)B̃(1),−σ(X)B̃(2)
)

,

where B̃
(i)
t := σ−1(X)B

(i)

tσ2(X)
. We note that (B̃(1), B̃(2)) is again a pair of Bessel-3 processes,

independent of F and of each other. This concludes the proof of Theorem 7.
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