ABSTRACT

Today’s software often comes in the form of applications: rigid turn-key products, which usually cannot be modified by their users. Computational media is an alternative vision of software that is inherently extensible and collaborative. With the Webstrates platform, we started to explore computational media almost a decade ago. Recently, we added the Codestrates v2 development platform and the Varv programming model to Webstrates. Together the three components enable the creation of inherently extensible and collaborative software on the web. In this demonstration, we introduce these three components and showcase their potential in a series of examples.

CCS CONCEPTS

• Human-centered computing → Interactive systems and tools; Web-based interaction; Collaborative interaction.

KEYWORDS

Computational Media, Webstrates, Codestrates, Malleability, Declarative Programming

ACM Reference Format:

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

NordiCHI Adjunct ’22, October 8–12, 2022, Aarhus, Denmark
© 2022 Copyright held by the owner/author(s).
https://doi.org/10.1145/3547522.3547714

1 INTRODUCTION

Software is often synonymous with applications and designed as turn-key and one-size-fits-all products. In this application-centric model, users are mere consumers of software and have little to no control over the functionality of their software. Even as a trained programmer it requires large efforts to modify one's applications—often, modifications are even entirely prohibited by software vendors. Computational media is an alternative model of software that emphasizes modification and combination of software tools. With computational media, users are not mere consumers but can actively modify their software and reclaim control over it.

Over the last ten years, we have explored the potentials and challenges of the computational media vision in a variety of projects and gradually developed a software stack to support creating prototypes that adhere to this vision. The foundation is the web-based Webstrates [9] platform. Later, we developed authoring tools with the Codestrates v1 and v2 platforms [2, 14] and recently the Varv programming model [4]. Together these three platforms act as a technological foundation and software stack for creating computational media prototypes. In this demonstration, we summarize the three platforms Webstrates, Codestrates v2, and Varv and showcase their potentials in a series of examples.

2 THE SOFTWARE STACK

Our software stack for computational media consists of three components: Webstrates, Codestrates v2, and Varv. Each of these platforms builds on top of each other and enables the creation of malleable and collaborative software on the web. All three platforms are open source and available on GitHub.

Webstrates1 [9] is a data synchronization and persistence layer. It is a web server application that serves websites—so-called webstrates—where the document object model (DOM) is synchronized and persisted on the Webstrates server. This means that all changes...
to the DOM, e.g., using the developer tools of a web browser, are synchronized in real-time across clients. This includes changes to JavaScript and CSS code.

Codestrates v2\(^2\)\(^2\) acts as a development platform for Websstrates and consists of an execution engine, the Cauldron authoring environment, and a package manager. The execution engine of Codestrates v2 makes it possible to edit and execute code fragments from within a webstrate. A code fragment is piece of code that can be executed and edited individually. Cauldron is an authoring environment that provides a tree-browser for code fragments and a tabbed editor to edit them. The package manager, lastly, enables sharing and distribution of code between webstrates and bundling of functionality. With the Codestrates v2 platform it is, e.g., trivial to implement a computational notebook on top of Webstrates.\(^3\)

Varv\(^4\)\(^4\), finally, adds a programming model for computational media, which allows for inherently and incrementally extensible software. Varv represents reprogrammable interactive software as a declarative data structure. Interactive behavior is defined as a set of concepts consisting of a schema and actions. These make it possible to incrementally add, modify, or suppress interactive behavior through the addition of new code. Varv concepts can be authored in Cauldron and additional tooling for Cauldron makes it possible to inspect the view and state of an application created with Varv.

A STEP TOWARDS SOFTWARE AS COMPUTATIONAL MEDIA

Throughout the years, we and others have used Webstrates, Codestrates v1, and Codestrates v2 to explore computational media in a variety of projects including collaborative data visualization, public libraries, collaborative video editing, collaborative programming assignments, computational laboratory notebooks, collaborative writing tools, and hybrid meetings.

Our software stack enables to create inherently extensible and collaborative software. In future work, we plan to also explore using Varv as a foundation for interactive software. More work, however, is still needed towards lowering the threshold for modifying software for users without programming knowledge. We hope that with this demonstration we motivate others to employ the presented software stack or parts of it as a technological foundation for prototypes and to join us in exploring software based on computational media.

ACKNOWLEDGMENTS

We want to thank all co-authors and collaborators on the presented projects. This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 740548) and from Carlsbergfondet (grant agreement No CF17-0643).

REFERENCES

\(^{2}\)Codestrates v2: https://codestrates.projects.cavi.au.dk/ (Retrieved July 14, 2022)

\(^{3}\)Codestrates v2 Examples: https://codestrates.projects.cavi.au.dk/docs/examples/ (Retrieved July 14, 2022)

\(^{4}\)Varv: https://varv.projects.cavi.au.dk/ (Retrieved July 14, 2022)