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Abstract—The field of industrial automation is experiencing
growth in interconnectivity and digital interaction. This growth
is slower than in a consumer segment due to often critical
nature of industrial control systems. Security of such systems
is an important aspect as malicious behaviors could lead to
potential system malfunction, injuries or financial losses. As
control networks are becoming more complex, having a robust
credential management for system operators and users that could
interact with the system components is an essential need. One way
of assuring the robustness of the credential management is by
using formal methods. In this paper we present a formally verified
credential management system for use within industrial control
systems. We demonstrate that the credential management can
use centralized credential storage with secret passwords available
only to system administrators. We use UPPAAL to formally
analyze security properties based on requirements defined by our
industrial partner and present the viability of formal verification
to a real-world industrial case study.

Index Terms—Credential management, Formal verification,
Model checking, UPPAAL.

I. INTRODUCTION

Modern industrial control systems offer an automation of
application functionality that is interactive to an open environ-
ment, such as remote access to secure real-time monitoring
and configuration by engineers, maintenance personnel and
vendors. Such systems rely heavily on automated security
protocols to secure access and integration of new devices given
the risks related to the system interconnectivity [11].

Key and credential management protocols have been widely
adopted and successfully demonstrated to secure different
applications [15], [19] following the ubiquitous automation
of control systems due to cheap computation resources. While
traditional industrial networks are typically protected by in-
troducing bump-in-the-wire devices to encrypt serial com-
munications or tunnel legacy protocols through encrypted
connections, modern approaches support encryption or au-
thentication closer to the protocol itself [1], [4]. OAuth2 [22]
and RADIUS [6] are industry standards widely deployed in
practice to provide user and device authentication in many
settings. Recent research has proposed advanced protocols
where manufacturer-provided secrets allow for assigning and
validating credentials on the fly with authorization information
encoded directly in the keys [20], [25].

Given the high interoperability and connectivity of such
systems for potential reconfiguration or to replace existing

components and integrate new modules, maintaining the func-
tionality and security level expected by the proprietary in-
dustrial control system becomes challenging [10], [18]. This
is aggravated by the need to support different authentication
mechanisms potentially coming from different vendors such as
certificates, passwords, cryptographic keys and other credential
types. Current solutions for this problem deployed in produc-
tion rely on a trusted, possibly redundant, centralized system.
A possible implementation for key and certificate management
consists in a tamper-proof device embedded into the system,
for example the keyvault proposed in [12].

Vulnerability of authentication protocols stems usually from
faulty design, inconsistent implementations and uncertainties
related to integration of new components and potentially
malicious users behavior [16]. Examining the reliability and
functionality of credential management protocols online is a
complicated task due to real-time functionality. Formal meth-
ods to verify security and integrity of credential management
protocols have been thoroughly used as a solid ground in the
literature [21], [23]. This provides assurances not obtainable
by use of post deployment testing.

This paper presents a formally verified credential man-
agement protocol for a dynamic industrial control system
where the network security depends on the access to net-
work switches. The credential management uses a cascade
of authentication processes to access different services with
secret passwords available only to system administrators. We
use UPPAAL to formally analyze security properties based
on requirements defined by our industrial partner. The rest
of the paper is organized as follows: Section II presents the
architecture of the industrial control systems and the key man-
agement infrastructure. Section III introduces the protocols
and cryptographic elements used within this work, security
requirements for the credential management system and briefly
describes UPPAAL. Section IV is a formal modeling of
both system behavior and credential management protocol.
Section V presents and discusses results from the analysis of
the security properties conducted using UPPAAL. Section VI
presents related work and finally Section VII concludes the
paper and discusses future plans.

II. SYSTEM ARCHITECTURE

This section presents the architecture of the industrial
control system we consider and the credential management



infrastructure. The control system architecture consists of (1)
the operations terminal (OT) providing local access to the
control subsystems for control engineers, (2) network switches
providing the network access to system controllers and (3)
the keyvault providing credential management services to the
OT and the switches within the control network. The control
network further consists of controllers executing the industrial
control, however in order to focus on components requiring
credential management, these are omitted. The architecture is
based on a control system used by our industrial partner, where
we add the keyvault component as a new subsystem. The full
architecture is shown on Figure 1.

OT is a local engineering terminal used by operators to
interact with the system. Within the scope of this paper, it is
considered a single point of access to the control system. OT
is used as a client to login to the system and, once logged in,
user can attempt to access and modify behavior of the network
switches, for example by updating different network settings.
Apart from providing access to the system, OT also displays
different messages generated by the system.

The switch is a networking device used to interconnect dif-
ferent industrial controllers. As the industrial control process is
distributed among these controllers, the switch is considered a
critical device since in case of malicious behavior it can cause
disruptions to the control process itself. In order for the user to
be able to interact with the switch, the user needs to be logged
in towards OT and further provide valid switch credential. The
credential is not known to the user before hand and could be
only obtained from the keyvault once the user is authenticated
and has a correct role.

Keyvault 1 Keyvault 2

Controllers

OT

Switch 1

Switch n

Fig. 1. Credential management system architecture

The keyvault is a centralized system for credential and key
management.

In our previous work we have proposed similar system for
cryptographic key management [12], it however omits user
credential management. The credential management differs
from key management since it requires user interaction. In
order to ensure the system availability for user interaction, the
keyvault is deployed in a redundant setup where the primary
keyvault component is active and, in case of disruption of this
component, the secondary component takes over operational
tasks transparently. In this system the keyvault acts as a

credential server, i.e. the users login towards the keyvault and
are issued a token, which shall be included in subsequent
requests. Furthermore, the keyvault is the only component
with knowledge of the current passwords for different switches
within the system, hence operators need to obtain this pass-
word from the keyvault in order to login towards a switch.

In this paper we consider that the system has passed the
commissioning phase, i.e. the random credentials for different
switches have been generated as well as a user database stored
within the keyvault.

It is important to note that the entire system resides on
a mobile platform with limited physical access, hence we
consider physical attacks such as removing or disconnecting a
switch unlikely to be carried out by unauthorized personnel.

III. BACKGROUND

This section provides the background of our work, mainly
cryptography principles and protocols, shared services for
the control network, the verification tool and the security
properties for key management.

A. The UPPAAL verification tool

UPPAAL is a tool-chain for analyzing concurrent real-
time systems that can be described as a network of non-
deterministic processes with finite control structure and real-
valued clocks [14]. Processes are described as timed automata
which is an extension of classical finite-state automata that in-
troduces clocks to describe real-time behavior. Such automata
use predicates, Boolean, integer variables and user defined
types to model execution states and based on this it is able to
carry out model checking. Communication between processes
occurs via channels or shared variables.

B. Authentication protocol

We consider the authentication workflow described in Fig-
ure 2. The protocol implements single sign-on for a user
authenticated with the OT to access any switch, without having
to know specific credentials. Authentication starts with a user
equipped with login credentials accessing the OT. The OT
forwards the login credentials to the keyvault for validation. In
case they are considered valid, the keyvault returns a token for
identifying the authentication attempt and requests information
about what switch the user would like to further access.
The workflow continues with the user selecting a switch and
receiving a matching ticket, which is forwarded to the switch
for validation. If positive, a session with identifier id is opened.

The protocol allows flexibility in the implementation of the
ticket validation process. Basically, the ticket can store any
information that the switch can validate itself as authentic,
or possibly forward to the keyvault for validation through a
backend connection. This allows multiple design choices with
performance-functionality trade-offs. Implementation choices
can thus range from simple and efficient random strings as
one-time passwords generated by the keyvault, to more compu-
tationally expensive public-key cryptography. An advantage of
the former is not storing any sensitive information in the ticket



itself. This option does not require any care when handling it
within the OT, which is why we consider it from here on. As a
side note, an example of the latter could be a digital signature
computed by the keyvault to attest a successful authentication,
in case the user must prove in a verifiable way to a third party
that such an authentication occurred.

In order to allow reuse of existing standards, the protocol
attempts to capture the main features of solutions widely
adopted by industry standards, so an implementation can be
built using off-the-shelf components. We considered several
solutions to instantiate our proposed protocol and explore
the design space in a practical deployment, in particular the
RADIUS and OAuth2 protocols. It is our expectation that the
combination of protocols for purposes as presented in this
paper can go beyond use by our industrial partner and can be
widely adopted in within the industrial control system domain.
This is where formal verification can provide answers in
regards to feasibility of the presented approach of combining
protocols and hence allow other industrial entities determine
if the subsystem presented in this paper is deployable within
their system.

1) RADIUS: The Remote Authentication Dial In User
Service is a de facto standard for authentication in wireless
networks and other networked infrastructures, widely deployed
in devices manufactured by multiple companies. In RADIUS,
a Network Access Server (NAS) receives requests from a
client to access a network resource using a set of credentials.
The NAS in turn contacts the RADIUS server to validate
the set of credentials through a backend connection, which
can result in access being granted or rejected. A challenge-
response authentication mechanism is also supported, in which
the RADIUS server returns a challenge to the client in a way to
implement more sophisticated authentication workflows where
the NAS does not receive the authentication credentials in
plaintext.

In terms of security, previous analyses have found the
RADIUS protocol to not be cryptographically sound, as it
requires using an insecure hash function (MD5) as a self-
synchronizing stream cipher in a customized construction [7]
to encrypt the credentials in transit. However, these concerns
are easily resolved by adopting the RadSec extension [26],
which basically eliminates the reliance on MD5 by transmit-
ting the protocol messages through a SSL/TLS connection,
which could be supported in our use case with a certificate
infrastructure [12]. Another security concern left unspecified
is how to protect the backend connection between NAS and
RADIUS server, but this could again be resolved by using
SSL/TLS with certificates in place issued by the keyvault.

2) OAuth2: It is an industry standard for delegated and fed-
erated authentication in single sign-on scenarios. The protocol
is highly complex with many different workflows tailored for
multiple scenarios. It assumes multiple entities: a resource
owner capable of granting access to a protected resource, a
resource server hosting the protected resources, and capable
of accepting and responding to protected resource requests
using access tokens; a client application masking resource

requests on behalf of the resource owner, and an authorization
server issues access tokens to the client after successful
authentication.

A first obstacle with an OAuth2 instantiation is mapping
the entities in our scenario to the prescribed roles. While
the OT is clearly represented by the client, the switch could
both represent the resource to be accessed or the resource
server hosting resources. The keyvault accumulates the roles
of a resource owner and authentication server. Semantically,
the switch is not a resource owned by the client inside the
network, and there is no separation between the entity owning
the resource and the authentication server. Practically this
means that an implementation of our proposed protocol would
have OAuth2 and a RADIUS phase. The OAuth2 phase will
be used to let the user login to the system itself (i.e. the
interaction application running within the OT) in order to
become authorized to request a switch login. The action of
user logging onto the switch is then handled using RADIUS.

IV. BEHAVIOR MODELING

We define the behavior of the system using a labeled
transition system (LTS) [2] with a set of states S, initial state
s0 and a transition relation →, given by a tuple 〈S, s0,→〉.
The transitions are labeled with actions from an alphabet
of actions of the respective system components. Specific
transitions define guards specifying the conditions to enable
the respective transition. We further introduce the following
definitions:
• S refers to a set of states while s denotes a single state.
• Scomp, comp ∈ {kv, ot, sw} represents the set of states

of keyvault kv, OT ot and a switch sw respectively.
• A refers to a set of actions while a denotes a single action.
• Acomp refers to an alphabet of actions of a component

as Acomp ⊂ A.
• V refers to a set of variables while v denotes a single

variable.
• Z refers to a set of constants while z denotes a single

constant.
• G refers to a set of guards while g denotes a single guard

defined as:
g
4
= v < z | v > z | v = z | g ∨ g′ | g ∧

g′ | true | false.
• → is a transition relation such as →∈ Scomp × G ×
Acomp × Scomp.

• Component type CompT is given as a tuple of two
elements, its behavior β and parameters P such as 〈β,P〉.

Further, we define each system component template with
the parameter P : P ⊂ 2V and behavior β as:

CompT
4
= 〈P, β〉 : β = 〈Scomp, scomp

0 ,→〉
and →∈ Scomp ×G×Acomp × Scomp

The behavior is first defined in the LTS notation as in-
troduces, in order to allow for generally specify the system,
and then this specification is translated to a specific tool, in
case of this paper UPPAAL. The LTS notification is part of a
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Fig. 2. System and Switch access protocol

larger system definition with intention to potentially utilize
different tools and their formalisms, hence need to have a
general model that can be translated to these formalisms. The
behavior β of different components is understood as timed
automata templates of the different components as for example
a timed automata model of the switch as shown in Figure 5.

A. Keyvault behavior
The keyvault is the central part of the credential man-

agement system. It can perform several actions given by an
alphabet Akv shown in Table I. Actions can be parametrized,
for example ValidateCredential(cred, t) where parameter cred
represents the credential received by the keyvault from OT
and t represents the time when the action occurs. This can be
expressed as transition:

s
ValidateCredential(cred, t)−−−−−−−−−−−−−→ s′

We further define guards and variables of the keyvault as
Gkv ={ValCred, ValToken, ValTicket} and V kv ={credDB,
tok exp, tic exp, act} respectively. The keyvault template is
instantiated as: KV = KVT {credDB, roleDB, tok exp, tic exp,
act}.

credDB is a set representing a database of credentials loaded
onto the keyvault at commissioning. We consider this database
static and do not model potential updates. The database
contains credentials of form: cred: 〈Id, password〉. roleDB
represents a database of roles that the credentials can be
associated to, the considered roles are role ∈ {admin, user}.
The credentials map to the roles in a one-to-one mapping as
credDB7→roleDB. The login requests against the keyvault are
validated by the guard ValCred as:

ValCred(cred, t)
4
= cred ∈ credDB



tok exp is a predetermined offset indicating the temporal
validity of access tokens issued by the keyvault. These tokens
are of form token: 〈 Id, role, issue time, expiry time〉. The
keyvault validates each request that contains a token to ensure
that the token is not expired using a predicate ValToken as:

ValToken(token, t)
4
= token.expiry time > t

Since the keyvault’s main task is to provide a switch access
ticket to successfully authenticated users with administrative
role admin, the guard is extended as:

ValToken(token, t)
4
=token.expiry time > t

∧ token.role = admin

Once the user has a valid token and requests an one-time
access ticket, the keyvault generates a switch access ticket as
ticket ∈ SwTickets where ticket:〈 uId, swId, expiry time 〉 with
the uId representing the user identity as read from the token,
the swId is the identity of the switch that the user requested
access to and the expiry time is the time when the access
ticket expires. Furthermore the SwTickets represents the set of
issued switch access tickets contained within the keyvault. The
switch access ticket could be sent to the switch by the user,
where the switch would again request the keyvault to validate
it. The full interaction protocol is illustrated in Figure 2. The
user login to the system and the consequent login to the switch
are based on protocols introduced in Section III. The keyvault
validates the switch access ticket as follows:

ValTicket(ticket, t)
4
=ticket.expiry time > t

∧ ticket ∈ SwTickets

In case that the ticket is determined as not valid, the access
to the switch is denied and the user has to request new access
ticket from the keyvault in order to gain access to the switch.

In order to provide redundancy within the system for
reliability concerns, it is considered that two keyvaults are
present within the system at any time, following a hot standby
procedure. In this procedure, in case that the primary keyvault
kvp experiences issues the system switches to the secondary
keyvault kvs. To provide transparent move from the primary
to the secondary keyvault, the two keyvaults keep consistent
state among themselves. In scope of this paper, this means
that the keyvaults synchronize their SwTickets database. We
express the Consistent predicate as:

Consistent(kvp, kvs, t)
4
= kvp.SwTickets = kvs.SwTickets

In case that the change from primary to the secondary happens,
the secondary keyvault becomes a primary and the primary
keyvault becomes secondary. This is represented by the key-
vault variable act, where act ∈ {true, false} as keyvault with
act=true is the keyvault currently used operationally within the
system. The keyvault that is broken down requires a human
interaction in order to be repaired, hence this procedure is out
of scope of this paper.

B. Operations Terminal behavior

OT is a local point of access terminal to the system. It can
perform several actions given by an alphabet Aot as shown
in Table I. As with the keyvault several of the OT actions
can be parametrized, for example Login(cred, t) where this
action synchronizes with the ValidateCredential(cred, t) of the
keyvault. OT does not define guards or variables, hence the
OT template is instantiated as:

OT = OTT 〈〉

Since OT is the primary human-machine interface for the
system, we consider the following assumptions:

1) OT is present in an area with restricted physical access.
2) OT connects towards the keyvault on a secure local

network.
3) OT provides an application to the user to access the

system.

C. Switch behavior

The switch is a network device deployed within the con-
trol network providing interconnectivity for various system
controllers. The switch can perform several actions given by
the alphabet Asw as defined in Table I. We further define
guards and variables of the switch as Gsw = {V alSession}
and V sw = {swId, session exp} where Id represents the
unique identifier of the switch and session exp represents the
preset offset for session expiry time. The switch template is
instantiated as:

SW = SWT 〈Id, session exp〉

The user can login to the switch by providing a keyvault-
generated one-time access ticket, which the switch sends
further for validation to the keyvault. Receipt of the ticket is
represented by the action LoginSW(swId, ticket, t). Since the
switches within the system need to be addressable individually,
each of the switches has a unique identifier, expressed as:

∀i, j, sw|i 6= j =⇒ swi.swId 6= swj .swId

Once the switch successfully validates the access ticket
against the keyvault, it opens a session. The session is ex-
pressed as session:〈swId, Id, expiry time〉, where Id is the
identity of the ticket opening the session and expiry time is
the expiry time of the session. In order for the user to interact
with the switch, the session has to be valid, i.e. not expired,
this is represented as guard:

ValSession(session, t)
4
= session.expiry time > t

The switch is considered a single user system, hence only one
session could be open at any time point. Once the session
expires, the user has to request a new one-time ticket in order
to interact with the switch further.



D. System behavior

We define the system behavior Sys as a parallel composition
of the component instances synchronizing on a defined set of
events (Table. I) [3]. The system comprises two keyvault units
and a possibility for multiple switches:

Sys
4
= 〈 ‖i SW〈Id, session exp〉
‖ KVp〈credDB, roleDB, tok exp, tic exp, act〉
‖ KVs〈credDB, roleDB, tok exp, tic exp, act〉
‖ OT 〈〉〉

During execution, the system can either advance due to
the transition of a single component instance or due to
a synchronization of compatible transitions among multiple
component instances. The overview of all actions including
their synchronization is shown in Table I.

V. FORMAL SECURITY ANALYSIS

This section describes the formal security analysis of the
credential management system using UPPAAL model checker.
First, we formally express the security properties of interest,
then we show how the properties have been verified within
UPPAAL. Finally, we discuss the results of the verification
and its impact on the system design.

A. Confidentiality properties

One of the important properties of the credential manage-
ment system is the assurance that the user, including the
administrator, never learns the credential for switch access.
Within the system this is handled by issuance of one time
tickets, however it is important to ensure that all generated
tickets are unique and cannot be reused. We express this as:

∀i, j|i 6= j =⇒ ticketi 6= ticketj

B. Authentication properties

Another important property of the credential management
system is the assurance that only administrators could obtain
a login ticket for the switch. This is important since the
switch reconfigurations shall be only carried out by system
administrators. We express this property formally as:

∀t, token|token.role 6= admin

∧ (t > token.issue time ∧ t < token.expiry time)

=⇒ ¬∃ticket|ticket.uId = token.Id

C. Freshness properties

Freshness is an integral property of the credential manage-
ment system. This property guarantees that the logins only
last for a reasonable amount of time. This lowers the attack
surface against replay attacks based on token or ticket theft, as
they would have to be applied in a short time frame. The same
freshness must hold for the switch sessions, where a long-lived
login could persist even though the administrator is no longer

using the system, and any user could take advantage of this
open session. We express the freshness property formally as:

∀token ∃t|token.expiry time < t

∧
∀ticket ∃t|ticket.expiry time < t

∧
∀session ∃t|session.expiry time < t

Once the expiry times of different entities (token, ticket,
session) are reached a corresponding login mechanism must
be used again to grant the entity with a new expiry time.

D. Availability properties

The availability property represents the expectation that at
any point in time, the system shall have an available primary
keyvault that contains all the necessary login information. This
means that the keyvault must satisfy the Consistent predicate
as well as being operationally active. We express this formally
as:

∀t ∃i| kvi.act = true ∧ Consistent(kvi, kvs, t)

This property of the system is important since if no keyvault
is available it is not possible to login to system components
protected by the keyvault. For an industrial control system this
could result in a loss of control and potential damage to the
system. The availability property has not been analyzed in this
paper due to the decision of the industrial partner to focus on
a system with single keyvault only. We have however prepared
this property as proposed next step will extend the system with
the second keyvault.

E. Formal verification in UPPAAL

Following the authentication protocol described in sec-
tion V-B, we have created a model in UPPAAL capturing
the behavior of this protocol. In this section, we provide
an overview over parts of the model and describe how the
different security properties are expressed. The full model is
available via [13]. The model has been built manually based
on the system behavior provided in section IV.

The UPPAAL template modeling the keyvault process,
illustrated in Figure 3, describes the synchronizations of the
keyvault with the OT, shown in Figure 4 and the switch,
illustrated in Figure 5. This includes handling of login re-
quests from the OT, validation of issued tokens, generation
of one-time-access tickets for the switch and validation of
these one time access tickets. The protocol is initiated by
the OT login request using the Login[Cred]! and Login[Id

]? synchronizations, sending the selected credential to the
keyvault. This synchronization uses the chan Login channel
with a parameter determining which credential from the array
of possible credentials is to be used. Once the credential is
received, it is validated and the system progresses based on
the result of this validation. This is expressed by the guard
validCredential. In case that the validation is successful, the
keyvault issues a token that is then provided to OT. The token



TABLE I
OVERVIEW OF SYSTEM ACTIONS AND THEIR SYNCHRONIZATIONS

Aot Akv Asw

Login(cred, t) GetLogin(cred, t) -
- ValidateCred(cred, t) -

AccessDenied(t) SendAccessDenied(t) -
- CreateToken(cred, t) -

GetToken(token, t) ProvideToken(token, t) -
SelectSwitch(token, SWId, t) SwitchReq(token, SWId, t) -

- ValidateToken(token, t) -
- CreateTicket(SWId, t) -

GetSWTicket(ticket, t) ProvideTicket(ticket, t) -
LoginSW(ticket, Id, t) - GetLogin(ticket, Id, t)

- GetTicket(ticket, t) CheckTicket(ticket, t)
- ValidateTicket(ticket, t) -
- AccessDeniedSW(t) GetAccessDenied(t)

AccessDeniedSW(t) - SendAccessDenied(t)
- AccessAllowed(Id, t) GetAccessAllowed(Id, t)
- - OpenSession(Id, t)

GetSessionOpen(t) - SendSessionOpen(t)
UpdateParam(Id, param, t) - GetParam(Id, param, t)

- - CheckSession(session, Id, t)
ACKSW(t) - SendACK(t)

generation is modeled via an update CreateToken(), where
the keyvault assigns the role, and its corresponding issue and
expiry times. The token generation is shown in Listing 1. Since
the token validation is an action that is not instantaneous,
the model captures passing of time during invocation of this
action. The flow of time is captured using the kv_clk <= 1

invariant in conjunction with the kv_clk >=1. This expression
ensures that the action uses one time unit by utilizing the
internal clock of the keyvault process clock kv_clk. This
clock is reset to zero at each invocation of the kv_clk=0

update. In order to provide timestamps such as the expiry
and issue times for tokens, tickets and sessions we introduce
a time discretization process, reading the UPPAAL clock and
providing integer discrete time. The time discretization process
is shown in Figure 6.

bool ValidateCredential(){

int i;

for(i=0;i<users;i++){
if(credentialRoles[i].Id ==

credentials[credential_Id].Id ){

if(credentialRoles[i].pass ==

credentials[credential_Id].pass){

return true;

}

}

}

return false;

}

void CreateToken(){

tokens[credential_Id].Id =

credentials[credential_Id].Id;

tokens[credential_Id].issue_time = current_time;

tokens[credential_Id].expiry_time = current_time +

expiry_offset;

tokens[credential_Id].role = getRole();

token_issued = true;

}

Listing 1. Token generation for valid credential

Once the OT initiates switch access request, the keyvault
validates the user token and determines if the access shall be
granted for the selected switch. The token validation is shown
in Listing 2. In case that the token is valid the ticket is issued
and transferred to the OT, where the user could utilize it within
a specific amount of time. Once utilized, the keyvault validates
the ticket using the ValidateTicket() guard and based on the
result hands over control to the switch.

bool ValidateToken(int sw){

int tokenId = switchRequests[sw].tokenId;

if(tokens[tokenId].expiry_time > current_time &&

tokens[tokenId].role == admin){

return true;

}

return false;

}

Listing 2. Token validation by the keyvault

In order to formally verify the security aspects of the
protocol, we express the selected security properties in CTL.
In this paper we mainly present the confidentiality, the au-
thentication and the freshness property. The confidentiality
property is expressed as A[]ticketsHaveUniqueIdentities()
as shown in Listing 3, the authentication property is expressed
as A[](canGenerateTicket()==false) imply !kv.gen_ticket

with the detail shown in Listing 4 and the freshness
property is expressed as A<>(issuedTokensExpire() &&



Fig. 3. UPPAAL template of the keyvault process

Fig. 4. UPPAAL template of the OT process

issuedTicketsExpire() && issuedSessionsExpire()), shown
in Listing 5.

bool ticketsHaveUniqueIdentities(){

int i;

for(i = 0;i<switches;i++){
int j;

for(j = 1;j <switches;j++){
if(switchCredentials[i].Id != -1){

if(switchCredentials[i].Id ==

switchCredentials[j].Id)

return false;

}

}

}

return true;}

Listing 3. The confidentiality property

bool canGenerateTicket(){

int i;

bool can = false;

for(i=0;i<users;i++){
if(tokens[i].role == admin &&

tokens[i].issue_time <= current_time &&

tokens[i].expiry_time >= current_time){

can = can | true;

}else{

can = can | false;

}

}

return can;

}

Listing 4. The authentication property

//Token freshness

bool issuedTokensExpire(){

bool expiry = true;

int i;

for(i=0;i<users;i++){
if(tokens[i].expiry_time>0){

if (tokens[i].expiry_time <= current_time){

//is expired

expiry = expiry & true;

}else{

expiry = expiry & false;

}

}

}

return expiry;

}

//Ticket freshness

bool issuedTicketsExpire(){

bool expiry = true;

int i;

for(i=0;i<switches;i++){
if(switchCredentials[i].expiry_time>0 &&

switchCredentials[i].expiry_time <= MAXTIME){

if (switchCredentials[i].expiry_time <=
current_time){

expiry = expiry & true;

}else{

expiry = expiry & false;

}

}

}

return expiry;



Fig. 5. UPPAAL template of the switch process

Fig. 6. Time discretization process

}

//Session freshness

bool issuedSessionsExpire(){

bool expiry = true;

int i;

for(i=0;i<switches;i++){
if(sessions[i].expiry_time>0){

if (sessions[i].expiry_time <=
current_time){

expiry = expiry & true;

}else{

expiry = expiry & false;

}

}

}

return expiry;

}

Listing 5. The freshness property

F. Results and discussion

The analysis has been carried out on a desktop computer
equipped with a 3GHz eight core CPU and 16 GB of DDR4
RAM running a 64bit version of UPPAAL 4.1.24 on a
Linux operating system. The system considered for verification
consisted of one OT, two switches, one keyvault and the
time discretization process. The system has been instantiated
with three credentials, one valid with administrative role, one
valid without the administrative role and one invalid. This
configuration has been selected based on initial requirements
provided by our industrial partner, as the initial system that is
expected to be deployed by the industrial partner will be of
this minimalist nature, with expectations to add more nodes to
the system such as an extra keyvault for redundancy purposes

in the future. The maximum allowed execution time that the
system could reach has been set to 16 time units. This has been
done in order to limit the state space, hence the time expiration
offsets for tokens, tickets and sessions have necessarily been
set to shorter amount of time to be able to capture the intended
scenarios. The setting of time expiration periods was such that
the full run of the protocol could be carried out within the
allotted time window. The verification of the confidentiality
property has taken 57 seconds and consumed 1,4GB RAM,
the verification of the authentication property has taken 65
seconds and consumed 1,6GB RAM and the verification of the
freshness property has taken 6 seconds and consumed 0,1GB
RAM. Verification of the rest of the properties has taken less
than a minute with proportional memory consumption. The
verification provided necessary answers for our industrial part-
ner in terms of determining the selection of specific protocols
for the system, in order to ensure that a specific combination
of protocols could be used within the given scenario. This
specifically answered the questions of feasibility of combining
the two protocols and provided understanding of keyvault
interaction is such environment. Based on the analysis the
industrial partner has decide to create a prototype and utilize
formal analysis further during the prototype implementation
process.

VI. RELATED WORK

Credential management and key management protocols are
a critical functionality to maintain the security of modern con-
trol systems. Different studies have examined the robustness
and reliability of such protocols to secure industrial control
systems using formal methods [5], [8], [9], [15], [17], [19],
[24].

Li et al. [15] extend the state of the art key management
protocol MAKA with a prompt user revocation we propose a
provable dynamic revocable three-factor and provide a formal
security proof in the random oracle. However, the analysis
does not explore the entire state space, thus no absolute
guarantee about the reliability can be delivered. Kahya et
al. [9] run a formal security analysis of the security sub-
layer of IEEE802.16 standard. Vulnerabilities with respect to
DoS and Man-in-the-middle attacks have been identified, and
the authors come up with mitigation processes following the



vulnerability traces. We aligned with this work when designing
our models by using UPPALL to improve the ICS security.

Rocchetto et al. [24] introduced a formal framework to
examine the security of cyber physical systems using a tool-
assisted CL-AtSe verification. The system model including
agents, communications and attack models are semantically
translated to a formal transition for verification purposes.
However, representing the system as a set of concurrent agents
my lead to state space explosion.

Huang et al. [8] introduced a formal verification framework
for security related timing constraints for communicating
automotive systems. The system model is described using
PrCcsl (probabilistic extension of clock constraint specification
language) then translated to UPPAAL models with stochastic
semantics. We align with this work, however we adopt deter-
ministic model behavior.

Using a high-level description language to model control
systems, as in [8], [24] leads to cheap modeling but compli-
cates the verification process as such languages need to be
translated to verifiable models.

Dojen et al. [5] presented a formal verification of a
cluster based key management protocol for Wireless Sensor
Networks. Mitigation processes have been proposed against
identified attacks and improve the reliability of such a protocol.
A formal verification of the updated protocol, incorporating the
mitigation strategies, against such threats has been conducted.
We model a dynamic credential management protocol and an-
alyze its robustness against security properties elicited during
a risk assessment carried out with our industrial partner.

VII. CONCLUSION

This paper introduced a formal setup to model and verify
several security properties of a credential management for
industrial control systems. The considered system architecture
has been modeled based on an actual case study, provided
by our industrial partner. The credential management protocol
adopted and verified in this paper is based upon two well
known authentication and authorization protocols, OAuth2 and
RADIUS. We have used UPPAAL timed automata to model
the behavior of the credential management protocol and used
symbolic model checking to verify security properties for dif-
ferent aspects of the protocol. We demonstrate that the formal
verification could be used practically with short verification
time, while providing input for the future system design.
Furthermore the industrial partner has decided to utilize formal
modeling and analysis when considering extensions to their
system.

As a future work, we plan to combine the presented keyvault
system with works on a cryptographic key management sys-
tem, in order to propose a formally verified subsystem capable
of both key and credential management in an industrial control
system setting.
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