Coversheet

This is the accepted manuscript (post-print version) of the article. Contentwise, the accepted manuscript version is identical to the final published version, but there may be differences in typography and layout.

How to cite this publication
Please cite the final published version:

Publication metadata

Title: *Lotus japonicus NOOT-BOP-COCH-LIKE1* is essential for nodule, nectary, leaf and flower development.

Author(s): Magne, K., George, J., Berbel Tornero, A., Broquet, B., Madueño, F., Andersen, S.U. and Ratet, P.

Journal: The Plant Journal

DOI/Link: [10.1111/tpj.13905](https://doi.org/10.1111/tpj.13905)

Document version: Accepted manuscript (post-print)

This is the peer reviewed version of the following article: Magne, K., George, J., Berbel Tornero, A., Broquet, B., Madueño, F., Andersen, S.U. and Ratet, P. (2018), *Lotus japonicus NOOT-BOP-COCH-LIKE1* is essential for nodule, nectary, leaf and flower development. Plant J, 94: 880-894. doi:10.1111/tpj.13905, which has been published in final form at 10.1111/tpj.13905. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

General Rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

If the document is published under a Creative Commons license, this applies instead of the general rights.
Lotus japonicus NOOT-BOP-COCH-LIKE1 is essential for nodule, nectary, leaf and flower development

<table>
<thead>
<tr>
<th>Journal:</th>
<th>The Plant Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>Draft</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Magne, kevin; C.N.R.S., IPS2</td>
</tr>
<tr>
<td></td>
<td>george, jeffrey; the sainsbury laboratory</td>
</tr>
<tr>
<td></td>
<td>Berbel Tornero, Ana ; IBMCP</td>
</tr>
<tr>
<td></td>
<td>Broquet, Blandine; C.N.R.S., IPS2</td>
</tr>
<tr>
<td></td>
<td>Madueno, Francisco; Instituto de Biologia Molecular y Celular de Plantas,</td>
</tr>
<tr>
<td></td>
<td>Departamento de Biologia del Desarrollo</td>
</tr>
<tr>
<td></td>
<td>Andersen, Stig; Aarhus University,</td>
</tr>
<tr>
<td></td>
<td>Ratet, Pascal; C.N.R.S., IPS2</td>
</tr>
<tr>
<td>Key Words:</td>
<td>determinate nodule, flower development, leaf patterning, Lotus japonicus,</td>
</tr>
<tr>
<td></td>
<td>NOOT-BOP-COCH-LIKE genes, nectary glands, nodule identity,</td>
</tr>
<tr>
<td></td>
<td>organogenesis</td>
</tr>
</tbody>
</table>
Lotus japonicus NOOT-BOP-COCH-LIKE1 is essential for nodule, nectary, leaf and flower development

Kévin Magne¹,², Jeoffrey George¹,²,* Ana Berbel Tornero³, Blandine Broquet¹,², Francisco Madueño³, Stig Uggerhøj Andersen⁴ and Pascal Ratet¹,²,§

¹ Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
² Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
³ Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Universidad Politécnica de Valencia, CPI Edificio 8E, Avenida de los Naranjos s/n, Valencia 46022, Spain
⁴ Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signaling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark

* Present address: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom

§ Denotes corresponding authorship e-mail: pascal.ratet@ips2.universite-paris-saclay.fr; pascal.ratet@cnrs.fr telephone: +33 169 153 377

Abstract: 250 words
Introduction: 609 words
Materials and methods: 1360 words
Results: 2528 words
Discussion: 1289 words
Acknowledgements: 182 words
Figure legends: 1846 words
Figures: colored figures: 7; uncolored figures: 1
Tables: 0
Supporting information: colored figures: 1; uncolored figures: 5; tables: 3
Abstract

The NOOT-BOP-COCH-LIKE (NBCL) genes are orthologs of Arabidopsis thaliana BLADE-ON-PETIOLE1/2. NBCLs are developmental regulators essential for plant shaping mainly through the regulation of organ boundaries, the promotion of lateral organ differentiation and the acquisition of organ identity. In addition to their roles in leaf, stipule and flower development, NBCLs are required for maintaining the identity of indeterminate nitrogen fixing nodules with persistent meristems in legumes.

In legume forming determinate nodules without persistent meristem, the roles of the NBCL genes are not known. We thus investigated the role of the Lotus japonicus LjNOOT-BOP-COCH-LIKE1 (LjNBCL1) in determinate nodule identity and studied its functions in aerial organ development using LORE1 insertional mutants and RNAi-mediated silencing approaches.

In Lotus, LjNBCL1 is involved in leaf patterning and participates in the regulation of axillary outgrowth. Wild-type Lotus leaves are composed of five leaflets and possess a pair of nectaries at the leaf axil. Legumes such as pea and Medicago have a pair of stipules at the base of their leaves, rather than nectaries. In Ljnbel1, nectaries development is abolished, demonstrating that nectaries and stipules share a common evolutionary origin. In addition, ectopic roots arising from nodule vascular meristems and re-organization of the nodule vascular bundle vessels were observed on Ljnbel1 nodules. This demonstrates that NBCL functions are conserved in both indeterminate and determinate nodules through the maintenance of nodule vascular bundle identity. In contrast to their roles in floral patterning described in others plants, LjNBCL1 appears essential for both secondary inflorescence meristem and floral meristem development.

Key words: NOOT-BOP-COCH-LIKE genes, determinate nodule, nodule identity, nectary glands, flower development, leaf patterning, Lotus japonicus, organogenesis.

Running head: NBCL roles in Lotus development
Significance statement:

The *Lotus japonicus* *LjNOOT-BOP-COCH-LIKE1* (*LjNBCL1*) functions are conserved for determinate nodule identity through the maintenance of nodule vascular bundle identity and for above-ground vegetative lateral organ determinacy. Furthermore, our mutants study showed that nectary glands and stipules share a common evolutionary origin and that the *Lotus japonicus* *LjNBCL1* gene is essential for both secondary inflorescence meristem development and promotion of the floral meristem fate determinacy.
Introduction

The \textit{NOOT-BOP-COCH-LIKE (NBCL)} genes, contain BTB/POZ (BROAD COMPLEX, TRAMTRACK and BRICK A BRACK/POXVIRUSES and ZINC FINGER) and ANKYRIN repeat domains and encode co-transcriptional factors involved in the gene regulatory network required for plant boundaries regulation (Aida and Tasaka, 2006a,b; Zadnikova and Simon, 2014; Hepworth and Pautot, 2015; Wang \textit{et al.}, 2016). These \textit{NBCL} genes play important roles in stipule, leaf and flower patterning and identity (Yaxley \textit{et al.}, 2001; Ha \textit{et al.}, 2003, 2004, 2007; Hepworth \textit{et al.}, 2005; Norberg \textit{et al.}, 2005; Xu \textit{et al.}, 2010; Couzigou \textit{et al.}, 2012; Khan \textit{et al.}, 2012; Khan \textit{et al.}, 2015; Tavakol \textit{et al.}, 2015; Jost \textit{et al.}, 2016) as well as in the abscission process (McKim \textit{et al.}, 2008; Wu \textit{et al.}, 2012; Couzigou \textit{et al.}, 2016). \textit{NBCL} genes were in addition recruited to the nodules of legume plants to determine their identity (Ferguson and Reid, 2005; Couzigou \textit{et al.}, 2012). The \textit{NBCL} gene clade includes genes orthologous to \textit{Arabidopsis thaliana (A. thaliana)} \textit{AtBLADE-ON-PETIOLE1} and \textit{AtBLADE-ON-PETIOLE2} (\textit{AtBOP1, AtBOP2}), \textit{Medicago truncatula (M. truncatula)} \textit{MtNODULE-ROOT1 (MtNOOT1)}, \textit{Pisum sativum (P. sativum)} \textit{PsCOCHLEATA1 (PsCOCH1)} and \textit{Hordeum vulgare (H. vulgare)} \textit{HvUniculme4 (Cul4)} and \textit{HvLaxatum-a (Lax-a)}. Known \textit{nbcl} mutants exhibit altered floral organ number, organ modification and homeosis of reproductive organs.

Legume plants from the Fabaceae family belong to the Rosideae, one of the rare clades predisposed to establish symbiosis with nitrogen fixing rhizobia (Soltis \textit{et al.}, 1995; Werner \textit{et al.}, 2014). This symbiosis takes place in the nodules. Legumes in the tribes Trifolieae and Fabae form indeterminate nodules characterized by the presence of a persistent apical/central meristematic zone (Nodule Central Meristem, NCM, Franssen \textit{et al.}, 2015) and peripheral vasculature ontologically related to roots (Ferguson and Reid, 2005; Couzigou \textit{et al.}, 2012) because they possess a root apical meristem-like meristematic zone called the nodule vascular meristem (NVM, Franssen \textit{et al.}, 2015). Determinate nodules are found in the tribes Phaseoleae and Loteae. They display subtle differences in terms of organogenesis and nodule organization and do not possess a persistent NCM (Corby, 1988; Guinel, 2009). In contrast to the well documented plant-bacteria recognition and infection processes as well as the \textit{de novo} organogenesis and functioning of the nodule (Oldroyd and Downie 2008; Oldroyd, 2013;
Udvardi and Poole, 2013; Suzaki *et al*., 2015), the mechanisms underlying the acquisition and preservation of the nodule identity as well as the maintenance of the different meristematic zones present in the nodule remain poorly described. Nodule identity studies were initiated with the studies of the *P. sativum* Pscochleata1 (*Pscoch1*) and *M. truncatula* Mtmodule-root1 (*Mtnoot1*), noot-bop-coch-like (*nbcl*) mutants, affected in the maintenance of nodule identity (Ferguson and Reid, 2005; Couzigou *et al*., 2012). These mutants are characterized by the emergence of root-like structures from the NVM (VandenBosch *et al*., 1985; Akasaka *et al*., 1998; Voroshilova *et al*., 2003; Ferraioli *et al*., 2004; Ferguson and Reid, 2005; Sinharoy and DasGupta, 2009; Couzigou *et al*., 2012; Couzigou and Ratet, 2015). In indeterminate nodules, the role of these two genes is to repress the root identity of NVM (Couzigou *et al*., 2012).

To address the role of NBCL genes in determinate nodules, we studied the role of the single copy *Lotus japonicus* gene *LjNOOT-BOP-COCH-LIKE* (*LjNBCL1*; Couzigou *et al*., 2016), orthologous to *MtNOOT1*. Our study revealed that *LjNBCL1* functions are conserved in this species for the maintenance of the *L. japonicus* determinate nodule identity. Furthermore, we found that *LjNBCL1* also plays essential roles in *L. japonicus* vegetative and reproductive development. We demonstrate that *LjNBCL1* is involved in the regulation of compound leaf complexity, in the formation of nectary glands, in flower development, as well as in secondary inflorescence meristem development and in the promotion of flower meristem determinacy.
Results

LjNBCL1 is constitutively expressed in roots and induced during nodulation

Expression studies were performed to determine whether LjNBCL1 participates in nodule development in L. japonicus. LjNBCL1 gene expression was measured in the root apical meristem (RAM), the root and in determinate nodules throughout nodulation, using Mesorhizobium loti (M. loti) strain NZP-2235 as symbiotic partner (Jarvis et al. 1982).

LjNBCL1 is constitutively expressed in non-inoculated L. japonicus roots and its expression in the RAM was detected at very low level. In primary root, two days post-inoculation (dpi), the level of LjNBCL1 gene expression is slightly induced compared to its level in non-inoculated roots. At 5 dpi, when nodule primordia are visible, LjNBCL1 gene expression increased. At 8 dpi, in nodules, its expression reached a maximum and at 12 dpi its expression started to decrease. From 16 dpi to 20 dpi, LjNBCL1 gene expression seemed to stabilize (Figure 1a). This pattern of expression is consistent with the LjNBCL1 gene expression profile obtained from the Lotus japonicus Gene Expression Atlas (https://ljgea.noble.org/v2/; Figure S1).

To better understand the kinetics of LjNBCL1 expression during nodulation, its expression was compared to the expression of symbiotic marker genes known to be sequentially induced during the symbiotic process. LjNODULE INCEPTION (LjNIN), LjEARLY NODULINE40-1 (LjENOD40-1), LjLEGHEMOGLOBIN2 (LjLEGH2) and LjADENYLATE ISOPENTHENYLTRANSFERASE3 (LjIPT3) are induced from 2 dpi (Figure 1b). From 2 dpi to 8 dpi, LjNBCL1 gene expression is induced and its gene expression kinetic is similar to the one of LjIPT3. After 8 dpi, by contrast to LjIPT3 expression level which continues to increase in nodules, LjNBCL1 gene expression remains lower (Figure 1b). The early induction of LjNBCL1 and its maintenance in the determinate symbiotic organ of L. japonicus might indicate that LjNBCL1 play a role during the symbiotic process.

In M. truncatula indeterminate nodules, the RAM marker genes MtPLETHORA1 and MtPLETHORA2 (MtPLT1/MtPLT2) were described as mostly expressed in NVM while MtPLETHORA3 and MtPLETHORA4 (MtPLT3/MtPLT4) were described as mostly expressed in NCM (Roux et al., 2014; Franssen et al., 2015). We identified LjPLETHORA1-LIKE (LjPT1-LIKE, Lj3g3v3245260), LjPLETHORA2-LIKE (LjPT2-LIKE, Lj3g3v1778650), LjPLETHORA3-LIKE (LjPT3-LIKE, Lj4g3v0708640), LjPLETHORA4-LIKE (LjPT4-LIKE, Lj4g3v1778650).
Ljg3v2841300) genes as the closest homologs of MtPLETHORA1 to 4 genes in L. japonicus and named them according to the literature (Franssen et al. 2015). Among these LjPLTs, LjPLT2-LIKE and LjPLT4-LIKE presented characteristic and common expression profiles. They were strongly expressed in the RAM, poorly expressed in primary root, induced during nodule primordia formation and nodule development, and their expressions were drastically reduced from 12 to 20 dpi in nodules. LjPLT1-LIKE showed a similar but lower expression profile while LjPLT3-LIKE was more expressed in roots than in nodules (Figure S2).

Interestingly, during nodule development, LjNBCL1, LjPLT2-LIKE and LjPLT4-LIKE showed similar expression profiles. Their transcripts accumulate in nodule primordia and reach a maximum in nodules at 8 dpi (Figure S2). By analogy to M. truncatula, LjPLT2-LIKE and LjPLT4-LIKE could represent marker genes for NVM and NCM activities respectively. Their expression profiles are in agreement with the determinate nature of L. japonicus nodules in which NCM activity is transient and also support well the determinate fate of the NVM previously suggested for determinate nodules (Corby, 1988).

LjNBCL1 is required for determinate nodule identity maintenance in L. japonicus

NBCL genes encode highly conserved co-transcriptional factors required for several plant developmental processes and especially for plant boundary patterning (Reviewed in Zadnikova and Simon, 2014; Hepworth and Pautot, 2015; Wang et al., 2016). The LjNBCL1 gene belongs to the NBCL clade and more precisely to the legume-specific NBCL1 sub-clade (Couzigou et al., 2012; Couzigou et al., 2016). LjNBCL1 was previously described for its role in aerial organ abscission (Couzigou et al., 2016).

In the present study, a second Ljnbc11 LOTUS RETROELEMENT1 (LORE1) mutant line (line 30119830, Figure 2a) was isolated. Self-fertilized heterozygous progeny of this line showed that the Ljnbc11 mutation segregated as a monogenic recessive trait with seven homozygous wild-type plants, sixteen heterozygous plants and four plants homozygous for the mutant Ljnbc11 locus (X²: 1.571; df: 2, pvalue: 0.05). The Ljnbc11 lines 30119830 (this study) and 30053558 (Couzigou et al., 2016, Figure 2a) have similar non-abscission and severe sterility phenotypes, suggesting they are allelic.

In the present work, we studied the two Ljnbc11:LORE1 insertion mutants (lines 30119830 and 30053558; Figure 2a) and performed RNA interference (RNAi) approaches
targeting LjNBCL1 transcripts (Ljnbc1:RNAi; Figure 2a) via hairy-root transformation (Kumagai and Kouchi, 2003; Okamoto et al., 2013). The impact of Ljnbc1:LORE1 insertion (line 30053558) and Ljnbc1:RNAi on LjNBCL1 transcript accumulation was assessed by qRT-PCR in 35 dpi nodules. LjNBCL1 transcript accumulations were drastically reduced by 82 % and reduced by 56 % in Ljnbc1:LORE1 mutant nodules (line 30053558) and in Ljnbc1:RNAi transgenic root nodules respectively (Figure 2b,c).

Nodulation experiments using Ljnbc1:LORE1 mutant lines (30053558 and 30119830) and Ljnbc1:RNAi hairy-root transformed plants inoculated with M. loti revealed a discrete nodule to root conversion phenotype relative to Mtnoot1 and Pscoch1 mutants which show about 50 % and 80 % of converted nodules respectively. Wild-type L. japonicus GIFU and control RNAi transformed plants targeting β-GLUCURONIDASE transcripts (GUS:RNAi) showed nodules with 100 % wild-type nodule phenotype (Figure 3a,c,e). The L. japonicus nodule to root conversion events resulting from Ljnbc1 inactivation have a low penetrance in both the Ljnbc1:LORE1 lines and the Ljnbc1:RNAi transgenic roots, with only 4 % and 5 % of the nodules that exhibited ectopic root development, respectively (Figure 3b,d,e).

Wild-type L. japonicus and GUS:RNAi lines showed pink nodules, indicating an efficient nitrogen fixation, however converted nodules from Ljnbc1:LORE1 and Ljnbc1:RNAi lines tend to be less pink and more white, indicating an ineffective nitrogen fixation probably due to the nodule to root homeosis (Figure 3a,b,c,d). As described for the M. truncatula and P. sativum nbcl1 mutants (Ferguson and Reid, 2005; Couzigou et al., 2012), Ljnbc1:LORE1 and Ljnbc1:RNAi mutant nodule populations have a wild type level of nitrogen fixation (Figure S3) when assessed at the plant level using acetylene reduction assay (ARA; Koch and Evans 1966). In Ljnbc1:LORE1 and Ljnbc1:RNAi lines, the reduced nitrogen fixation of converted nodules might be compensated by the majority of unconverted functional nodules present on each plant.

Ectopic roots arising from the L. japonicus determinate nodule originate from the nodule vasculature meristems

Detailed histological analysis of the GUS:RNAi transformed root nodules shows the classic wild-type globular shape of determinate nodules (Figure 4a,d; Corby, 1988; Walsh et al., 1989; Guinell, 2009). In contrast, in Ljnbc1:RNAi and Ljnbc1:LORE1 mutant nodules, an apical nodule-root structure is clearly present on 5% and 4% of nodules respectively (Figure 4b,c).
Longitudinal sections of the *Ljnbcl1* nodules reveal the vascular bundle continuum between nodule vascular bundles (NVB) and nodule ectopic root vasculatures. This demonstrates that determinate nodule ectopic roots originate from the NVM as do ectopic roots in indeterminate nodules of *nbcl1* mutants (Figure 4b,c; Ferguson and Reid, 2005; Couzigou *et al.*, 2012).

In agreement with the literature describing wild-type determinate nodule organization, transverse sections of the *GUS:RNAi* nodules show peripheral vascular bundles deeply embedded in nodule parenchyma close to the rhizobia infected cells. In determinate nodules, two to three cell layers separate the NVB from the first infected cells (Brown *et al.*, 1995; Guinel, 2009; Figure 4d,g; Figure S4). In contrast, in *Ljnbcl1* converted nodules, NVB are surrounded by additional root cortex-like cell layers and tend to be isolated from the nodule infected zone (Figure 4e,f,h,i). In *Ljnbcl1* converted nodules the number of cells separating NVB from infected cells is significantly increased and reaches five to six cortex cell layers (Figure 4e,f; Figure S4). Comparison of completely dissociated *Ljnbcl1* nodule root structures and *L. japonicus* wild-type roots revealed that the number of cortex cell layers surrounding the vasculature (four to five cortex cell layers; Wopereis *et al.*, 2000) were not significantly different highlighting the NVB to root identity shift (Figure S5).

In indeterminate and determinate nodules, bundles containing xylem and phloem tissues are surrounded by pericycle cell layers and by an external vascular endodermis cell layer. Previous studies of legume nodule bundle organization have described a collateral organization of xylem and phloem tissues in which phloem tissues face the infected cells and xylem tissues face toward the exterior of the nodule (Pate, 1969; Guinel, 2009). Intriguingly, in *L. japonicus*, it is the opposite. Bundle organization remains collateral but phloem tissues face toward the exterior of the nodule and the xylem tissues face toward the infection zone (Figure 4g). In *Ljnbcl1* mutant nodules, this atypical organization is conserved but once the NVB that will generate ectopic root starts to dissociate from the infected cells tissues, the xylem and phloem poles delocalize progressively until xylem and phloem poles finally align periclinally and anticlinally to the nodule periphery respectively (Figure 4h,i). This loss of NVB collateral organization in *Ljnbcl1* represents a NVB to root vascular bundle identity shift.

LjNBCL1 is required for nectary development, leaf patterning and for the control of the number of axillary meristem
Database and *L. japonicus* genome analysis reveal that only one NBCL gene is present in this plant in contrast to other legume plants. *LjNBCL1* gene expression analysis in the aerial part of wild-type *L. japonicus* shows that *LjNBCL1* transcripts accumulate at low levels in leaves, internodes and in young pods. They were more abundant in nodes and highly abundant in flower from stage 10 to 13 according to the floral stages described in Weng et al., 2011 (Figure 5a). These results are in agreement with *LjNBCL1* expression data available from the *Lotus japonicus* Gene Expression Atlas (https://ljgea.noble.org/v2/; Figure S1).

In *Ljnbc1:LORE1* homozygous mutants, 13 % of the leaves had an additional leaflet relative to *L. japonicus* GIFU suggesting that *LjNBCL1* contributes to leaf patterning by limiting the meristematic potential of the compound leaf (Figure 5b,c,d). In addition, while *L. japonicus* wild-type plants produce one axillary at each leaf axil, *Ljnbc1:LORE1* homozygous mutants often produced multiple axillaries at a single leaf axil suggesting that *LjNBCL1* is required to control the number and the growth of these axillary meristems (Figure 5e,f).

Together with *Tetragonolobus* and *Bonjeania*, *Lotus* leaves possess a pair of nectary glands at the base of the petiole, adjacent to the leaf axil, at each node. These nectary glands were proposed to be modified stipules (Figure 5g,i; Irmisch, 1861; Heyn, 1976). Nectary glands are completely absent in *Ljnbc1* mutants and scanning electron microscopy (SEM) analysis showed no trace of nectary gland development at the leaf axil (Figure 5h,j). As well as loss of nectary glands, *Ljnbc1* mutants exhibited a significant increase in petiole length relative to the wild-type (Figure 5i,j; Figure S6). These results support a general role for the NBCL genes in both stipule and nectary gland development by defining the identity of the leaf proximal region, as proposed before in *A. thaliana*, *M. truncatula* and *P. sativum* (Gourlay et al., 2000; Yaxley et al., 2001; Ha et al., 2003; Hepworth et al., 2005; Norberg et al., 2005; McKim et al., 2008; Couzigou et al., 2012), but in *L. japonicus*, the *LjNBCL1* gene is specifically required for nectary gland formation.

LjNBCL1 gene function is required for floral meristem fate acquisition

The first striking phenotype observed in *Ljnbc1:LORE1* mutants was their defective flower development leading to almost complete sterility (Figure 6a,b). A *L. japonicus* inflorescence presents one to three adaxial bracts and abaxial nectary glands arising at the pedicel base. This pedicel supports the receptacle from which 21 floral organs develop: five fused sepals,
five petals (one adaxial standard, two lateral wings and two abaxial fused keels), ten (nine fused and one unfused) anthers and one carpel (Figure 6c,e,g; Zhang et al., 2003; Dong et al., 2005).

Similarly to the Ljnbcl1 leaves which showed an increased complexity, Ljnbcl1 mutant inflorescences often display one additional adaxial bract relative to the maximum of three bracts present in wild-type plants (Figure 6g,h). In addition, Ljnbcl1 mutants are severely impaired in the formation of the floral organs and develop a range of more or less complex structures instead of a normal flower (see below). One characteristic structure formed instead of a flower is the fused trumpet-like lamina structure (Figure 6c,d). In Ljnbcl1, the inflorescence nectaries located in abaxial position at the pedicel axil are also absent (Figure 6e,f). In addition, we observed the derepression of an abaxial subtending leaf-like structure outgrowth later called cryptic bract (Figure 6c,d,e,f). Taking into account only the bracts and the cryptic bract, the simplest organ combination that we observed in Ljnbcl1 was 1 bract and 1 cryptic bract and the most complex structure consisted of 4 bracts and 2 cryptic bracts (Figure 6h). All intermediary combinations exist in the mutant flowers, meaning that only based on bract/cryptic bract, at least 8 organ combinations exist in Ljnbcl1.

In addition to the instability of bract/cryptic bract organization, in Ljnbcl1, structures formed instead of flowers can take several forms. These were grouped and quantified into the following seven flower-like structures: absence of any structure (Figure 7a, 24 %), prematurely aborted fused trumpet-like lamina structure (Figure 7b, 6 %), developed fused trumpet-like lamina structure (Figure 7c, 11 %), leaf-like structure (Figure 7d, 38 %), more complex leaf-like structure showing organ separations (Figure 7e, 11%), early aborted floral-like structure (Figure 7f, 7 %) and fully-developed but sterile flower (Figure 7g, 3 %). Taking all inflorescence organs into account, Ljnbcl1 mutants presented at least 56 different combinations of inflorescence organization. These flower phenotypes highlight the crucial role of the LjNBCL1 gene for the acquisition and the determination of floral meristem identity.

Secondary inflorescence meristem and floral primordia development are affected in the Ljnbcl1 mutant

In L. japonicus, as in other legumes, at the floral transition, the apical meristem of each shoot becomes a primary inflorescence meristem (I1) which produces a secondary inflorescence meristem (I2) at each node, in the axil of the leaf, and it is the I2 that generates the floral
meristems (Benlloch et al., 2015). When *L. japonicus* floral meristems partition from the I2, the
differentiated I2 becomes covered by trichomes (Feng et al., 2006). To understand the defects in
floral development of *Ljnbc11* mutants, we studied the ontogeny of the inflorescence of
Ljnbc11:LORE1 mutant plants by SEM.

SEM analysis showed that the I1 inflorescence of wild-type *L. japonicus* formed an I2 in
the axil of the compound leaf. Floral meristems derived from the I2 of the previous node were
seen, adjacent to trichomes which covered the fully differentiated I2 (Figure 8a,b,c).

In contrast, the structures observed in the inflorescence apex of the *Ljnbc11:LORE1*
mutants were very different. At very early stages of their development, the leaf primordia
subtended at their axils a poorly developed dome that was separated from the I1 by a line of
developing trichomes similar to the ones observed in the wild-type I2 at stage five when they
differentiate after partition of the floral meristems (Feng et al., 2006). Structures looking-like
wild-type I2 of previous developmental stages were never detected in the mutant apex. The small
domes delimited by the trichomes that should correspond to floral meristems did not progress
along with the development of the leaf primordia (Figure 8d,e,f). These atypical structures found
in the *Ljnbc11:LORE1* inflorescence apex suggest that *Ljnbc11* I2 develop abnormally producing
aberrant floral meristem-like structures that do not progress normally. This analysis shows that
the defects in reproductive structures start very early in *Ljnbc11:LORE1* inflorescence ontogeny.
Discussion

The numerous vegetative and reproductive developmental defects observed in \textit{Ljnbcl1} mutants and the absence of an \textit{LjNBCL2} sequence in databases suggest that there is only one \textit{NBCL (LjNBCL1)} in the genome of \textit{L. japonicus} ecotype GIFU in contrast to other legume plants studied, which have at least two distinct \textit{NBCL} genes. In this work, we show that in the determinate nodules of \textit{L. japonicus}, \textit{LjNBCL1} gene is constitutively expressed in roots, induced during nodulation and thus behaves as the \textit{MtNOOT1} gene (Couzigou et al., 2012). We demonstrate that, despite the differences existing in determinate nodule organogenesis and organization, \textit{LjNBCL1} gene function in maintenance of nodule identity through NVB root identity repression is conserved. A similar nodule to root conversion phenotype was described in \textit{Glycine max} determinate nodules inoculated with \textit{Bradyrhizobium japonicum} mutant strains (\textit{ΔphyR, ΔecfG}; Gourion et al., 2009) but the origin of the nodule ectopic roots was not described in this context. In this study we demonstrate that ectopic roots arising from determinate nodules are initiated from the NVB as hypothesized by Couzigou and Ratet (2015). This finding is in agreement with the literature describing nodule ectopic roots that initiate from NVM (VandenBosch et al., 1985; Akasaka et al., 1998; Voroshilova et al., 2003; Ferraioli et al., 2004; Ferguson and Reid, 2005; Sinharoy and DasGupta, 2009; Couzigou et al., 2012; Couzigou and Ratet, 2015). The low penetrance of the nodule to root conversion in \textit{Ljnbcl1} compared to \textit{PSCOCH1} or \textit{Mtnoot1} suggests that one of the roles of the NCM in indeterminate nodules is to maintain active NVM to confer indeterminate growth. In determinate nodules, there is no persistent NCM: once vascular strand anastomosis has occurred at the nodule apex, the NVM becomes determinate leading to NVB growth arrest (Corby, 1988; Guinel, 2009). We suggest that this determinate NVM status makes determinate nodule less susceptible to root conversion because homeosis requires constitutively active NVM. Moreover, we also report that the \textit{L. japonicus} NVB harbours a non-canonical xylem/phloem collateral organization with xylem and phloem facing toward the infected cell and the exterior of the nodule, respectively. We revealed also that this xylem/phloem collateral organization is lost in converted nodules suggesting that \textit{Ljnbcl1} NVB identity is lost and root identity is acquired during homeosis.

\textit{NBCL} genes functions are required for lateral organ determinacy, leaf proximal/distal patterning and for the control of shoot branching, and these functions are conserved across dicots.
and grasses (Ha et al., 2003; Hepworth et al., 2005; Norberg et al., 2005; Couzigou et al., 2012; Tavakol et al., 2015). The present study shows that in L. japonicus, the NBCL1 gene fulfils the same functions. The six leaflets phenotype and the additional axillaries observed in Ljnbcl1 reflect a reduction of the determinacy of lateral organs. Also, at the base of leaves, NBCL genes repress cell division and promote lateral organ differentiation. In Ljnbcl1, the petiole length increase and the lack of nectary glands may reflect the failure of these two processes. Wild-type L. japonicus exhibits a pair of nectary glands that have been for a long time proposed to be ontologically related to stipules (Irmisch, 1861; Heyn, 1976). The complete absence of nectary glands in Ljnbcl1 mutants definitively supports an ontological relationship between stipules and nectary glands. LjNBCL1 is thus essential for nectary gland initiation and development in accordance with the role of NBCL as a master regulator of stipule initiation, development and determinacy in P. sativum, M. truncatula and in A. thaliana (Gourlay et al. 2000; Yaxley et al., 2001; McKim et al., 2008; Couzigou et al., 2012).

In A. thaliana, P. sativum or M. truncatula, NBCL loss-of-functions modify the number of floral organs, the symmetry of the flower and impact the identity of floral organs (Yaxley et al., 2001; Ha et al., 2003, 2004; Hepworth et al., 2005; Norberg et al., 2005; Xu et al., 2010; Couzigou et al., 2012). The L. japonicus nbcl1 mutant showed severe defects in floral initiation and patterning characterized by a large range of floral phenotypes, ranging from wild-type-like flowers to complete absence of floral organs, suggesting a high instability in cell differentiation/proliferation processes in the floral primordia. The floral meristem determinacy acquisition is often associated with the suppression of the subtending bract. Indeed, mutants affected in floral meristem fate acquisition present floral meristem mis-establishment and enlargement of a cryptic bract (Schultz and Haughn, 1991; Levin and Meyerowitz, 1995; Long and Barton, 2000; Hepworth et al., 2005; Norberg et al., 2005; Hepworth et al., 2006; Karim et al., 2009). In Ljnbcl1, a floral cryptic bract develops indicating that the floral meristem is not fully determinate. The floral bract outgrowth and the strong flowering defects observed in Ljnbcl1 mutants indicate that LjNBCL1 functions are conserved for floral meristem determinacy in L. japonicus and suggests that LjNBCL1 is essential to allow the expression of floral meristem identity genes. In A. thaliana, AtBOP1/2 contribute to floral initiation and patterning by promoting the expression of LEAFY (LFY) and APETAL1 (API), the main A. thaliana floral
meristem identity genes (Norberg et al., 2005; Blázquez et al., 2006; Karim et al., 2009; Xu et al., 2010). Therefore, future experiments will indicate if the severe floral defects of the Ljnbcl1 mutants are related to reduced expression of the L. japonicus LFY and AP1 orthologs.

The fused trumpet-like lamina structure in place of flowers is a distinctive Ljnbcl1 mutant phenotype that is reminiscent of the A. thaliana Atcup-shaped cotyledon1/2/3 (Atcuc1/2/3) double and triple mutants, which present fusions of different organs such as cotyledons, sepals, stamens, leaves, stems and pedicels (Aida et al., 1997; Takada et al., 2001; Hibara et al., 2006). CUC genes are, like NBCL genes, involved in organ separation processes and in the establishment of boundary zones, where they are consistently expressed and function to repress growth (Wang et al., 2016). In Arabidopsis, AtCUC1 promotes the expression of the AtLIGHT-DEPENDENT SHORT HYPOCOTYLS 3 (AtLSH3) and its paralog AtLSH4, which are members of the Arabidopsis LSH1 and Oryza G1 genes family (ALOG; Cho and Zambryski, 2011; Takeda et al., 2011). Furthermore, in Lycopersicon esculentum it has been shown that ALOG proteins are able to interact with NBCL proteins (Xu et al., 2016). Thus, in L. japonicus, boundary zone patterning and regulation might be carried-out through a similar CUC/ALOG/NBCL module in which LjNBCL1 plays a major role.

In L. japonicus, floral meristems derive from partitioning of the I2 secondary inflorescence meristem (Feng et al., 2006). In the Ljnbc1 inflorescence apex, early in its development, the only trace of I2-like structure observed is a line of developing trichomes, identical to those observed in wild-type differentiating I2 at stage five after floral primordia formation (Feng et al., 2006). This line delimited a small dome corresponding to an abnormal floral primordium. The absence of structures looking-like wild-type I2 at earlier developmental stages in Ljnbc1 apex suggests that the development of these mutant I2s are very premature and fast. This probably negatively affects floral meristem initiation and fits well with the severe floral development defects of the Ljnbc1 mutants. Acquisition of I2 meristem identity in pea is known to be controlled by VEGETATIVE1 (VEG1), a MADS-box gene from the same clade as AP1 (Berbel et al., 2012). It is likely that VEG1 function is conserved in other legumes, including L. japonicus, where VEG1 orthologs are present (Benlloch et al., 2015). In agreement with this, the phenotype of the soybean dt2 mutant, with a dominant mutation in the ortholog of VEG1 agrees with the conservation of the VEG1 function (Ping et al., 2014). In the same way that the AtBOP1/2 promote the expression of the floral meristem identity genes LFY and AP1 (Karim et al., 2009).
al., 2009; Xu et al., 2010), LjNBCL1 might also be required for the proper expression of the L. japonicus VEG1 ortholog.
Materials and methods

Plant material and growth conditions. *L. japonicus* ecotype GIFU (Handberg and Stougaard, 1992) and the corresponding Ljnbcl1 LORE1 insertional mutant lines (line 30053558, Couzigou et al., 2016 and line 30119830, this study) obtained from the LORE1 insertion mutant collection (https://lotus.au.dk; Mun et al., 2016; Malolepszy et al., 2016) were used. *L. japonicus* seeds were scarified using sand paper, surface-sterilized 30 min with sodium hypochlorite, washed three times with sterile water and left overnight in sterile water under agitation at 4 °C. Seeds were germinated on agar plates (Kalys Biotech, HP696-5, 7 g l⁻¹) for 2 days at 24°C. For in vitro nodulation studies, *L. japonicus* seedling were grown on Buffered Nodulation Media (Ehrhardt et al., 1992), solidified with Kalys agar 7 g l⁻¹ and supplemented with 0,5 µM of 2-aminoethoxyvinyl glycine (Sigma-aldrich). For studies of nodulation in pots, a sand/perlite mixture was used (1/2, v/v). For vegetative development and flowering studies, a loam/peat/sand mixture was used (70/3,5/7, v/v/v; http://www.puteaux-sa.fr) with expensed clay pebbles at the bottom of the pot. *L. japonicus* were grown under a 16/8 h light-dark cycle, a 23/23 °C day-night temperature regime, 60 % relative humidity and 200 µE light intensity. Plants were watered three times a week, twice with water, once with nutritive solution, alternately. For nodulation studies a N-free nutritive solution (Plant prod, NPK 0-15-40) was used, otherwise, a N+ nutritive solution (Soluplant, NPK16 6 26) was used.

Rhizobial strain, growth conditions and inoculation. *M. loti* wild-type strain NZP-2235 (Jarvis et al. 1982) was used for *L. japonicus* nodulation. Rhizobia were grown on solid or liquid YEB (Krall et al., 2002) for 2 days under darkness at 30 °C. For in vitro and sand/perlite nodulation, *L. japonicus* seedling or hairy-root transformed plant were inoculated with 1 ml and 25 ml of *M. loti* suspension at OD: 0.1, respectively.

L. japonicus DNA extraction. *L. japonicus* DNA was extracted from young leaves using a phenol/chloroform procedure. DNA was precipitated using cold sodium acetate 3 M; isopropanol (0.1:1) and washed using ethanol 70 %. DNA samples were dried and resuspended in sterile water. An RNase treatment was finally performed (Roche).

Ljnbcl1:LORE1 insertional mutant genotyping strategy. In line 30053558, the LORE1 retro-element is inserted 2077 bp after the ATG codon on genomic DNA sequence, 1134 bp after the
AUG codon on mRNA sequence (NCBI Acc. No.: JN408495), between amino acids isoleucine 378 and glutamic acid 379 of the LjNBCL1 protein (NCBI Acc. No.: AEM62768). In line 30119830, the LORE1 retro-element is inserted 1803 bp after the ATG codon on genomic DNA sequence, 860 bp after the AUG codon on mRNA sequence and between amino acids leucine 286 and alanine 287 of the LjNBCL1 protein. The presence of the 5406 bp length LORE1 TY3-gypsy type retrotransposon (NCBI Acc. No.: AJ966990) at the LjNBCL1 locus was checked by PCR in lines 30053558 and 30119830 using primers described in the Table S1.

RNA interference. The 263 bp RNAi_LjNBCL1#1 amplicon was designed against the LjNBCL1 mRNA sequence from nucleotide 474 to nucleotide 736. Amplicon specificity was determined through BLAST analysis (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn) against the L. japonicus genome. RNAi_LjNBCL1#1 amplicons were amplified from L. japonicus ecotype GIFU cDNA using Phusion® High-Fidelity DNA Polymerase (NEB) following the manufacturer’s recommendation, cloned in pENTR/D-TOPO vector (Life technologies) and introduced by Gateway LR recombination (Invitrogen) in both anti-sense and sense in a pFRN-RNAi binary vector (Gonzalez-Rizzo et al., 2006; derived from binary pFGC5941 vector; NCBI Acc. No.: AY310901). Constructs of interest were introduced into Agrobacterium rhizogenese (A. rhizogenese) ARqua1 (streptomycinR-derivative strain of A4T; Quandt et al., 1993) by electroporation (Bio-rad, E. coli Pulser). The LjNBCL1:RNAi construction transcript structure was predicted using the online software RNAfold and the « minimum free energy » pairing algorithm (rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi). An ARqua1 strain expressing an RNAi construct designed against the β-GLUCURONIDASE transcripts (GUS:RNAi, Gonzalez-rizzo et al., 2006) was used as control. Primers used for the RNA interference strategy are described in Table S2.

A. rhizogenes mediated L. japonicus hairy-root transformation. L. japonicus hairy-root transformations were performed as described in Kumagai and Kouchi 2003 and Okamoto et al., 2013 with minor modifications using the A. rhizogenes ARqua1 strain. Hairy-roots were subsequently inoculated with M. loti and nodules were observed at 35 dpi.

qRT-PCR Gene expression analyses. Total RNA extractions were performed from frozen tissues using TRIzol® reagent (Ambion) following manufacturer’s recommendations for
underground organs and using a sodium borate/TRIzol procedure (adapted from Høgslund et al., 2009) for aboveground organs. RNA samples were treated with the TURBO DNA-free™ Kit (Ambion) according to the manufacturer’s recommendations. Full-length cDNA were synthesized using SuperScript™ II Reverse Transcriptase kit (Invitrogen) in the presence of Ribolock RNase Inhibitor (Thermoscientific). qRT-PCR reactions were performed using the LightCycler FastStart DNA Master SYBR Green I kit on a Light Cycler 480 II device according to manufacturer’s instructions (Roche). Cycling conditions were as follows: 1 pre-incubation cycle (95 °C, 10 min), 40 amplification cycles [(denaturation: 95 °C, 10 s), (hybridization: 60 °C, 15 s), (elongation: 72 °C, 15 s)], 1 melting curve cycle [(denaturation: 95 °C, 15 s), (hybridization: 55 °C, 1 min), (denaturation: 95 °C)], 1 cooling cycle (40 °C, 30 s). Cycle threshold and primer specificity analysis were performed using the LightCycler 480 software release 1.5.0 SP4. Primer efficiencies were calculated with LinReg PCR: Analysis of Real-Time PCR Data, version 11.1. LjPP2A and LjUBC were used as reference genes for gene expression normalization. Primers used for qRT-PCR are provided in Table S3.

Light Microscopy and sample preparation. Sample sections embedded in technovit resin were treated essentially as described in Van de Velde et al. (2006). Fixed samples were infiltrated 15 min under vacuum (≈500 mm Hg) in sodium cacodylate buffer pH: 7 (0.05 M), glutaraldehyde 1 % and formaldehyde 4 % and incubated at 4 °C overnight. After dehydration in successive ethanol bathes, samples underwent successive 1 h ethanol/technovit stock solution bathes (3:1, v/v), (1:1, v/v), (1:3, v/v) and three (1:0, v/v) at 4 °C under agitation. Samples were embedded in technovit resin using teflon Histofix S embedding moulds (Heraeus Kulzer). 5 µm sections were cut using a microtome (Leica, RM 2155) and tungsten disposable blade (Leica, TC-65). Sections were stained for 10 min with toluidine blue (0.02 %), observed with a microscope (Olympus, BX53) and digital images were acquired using cellSens Standard software (Olympus life science).

Acetylene reduction assay. Acetylene reduction assays (ARA) were performed on individual plants inoculated with *M. loti* at 35 dpi with a protocol modified from Koch and Evans (1966). Basically, the nodulated root system of one plant was placed in 21 ml glass vial sealed with rubber septa in presence of 200 µl of water. Acetylene gas (500 µl) was injected into each vial and 2 h incubation was performed. For each sample, 1 ml of gas was injected. Ethylene
production was measured using a Gas Chromatograph (Agilent Technologies, 7820A) equipped with a GS-Alumina column (50 m x 0.53 mm) with hydrogen as carrier gas. Column temperature and gas flow were adjusted at 120 °C and at 7.5 ml min⁻¹, respectively.

Scanning electron microscopy. Nectary glands and inflorescence apex from *LjnbcI1* homozygous mutants and *LjNBCL1* wild-type siblings were fixed in FAE (ethanol 50 %, formaldehyde 3.7 % and glacial acetic acid 5%) through 5 successive vacuum pulses at ≈ 500 mm Hg for 5 min and incubated in fresh FAE at 4 °C over-night under darkness. Samples were dehydrated with successive 30 min ethanol baths (70 %, 80 %, 100 %, 100 %). Critical point drying was performed at 17 °C and 62 bar (900 psi) for 90 min using liquid CO₂ as the transitional fluid in a critical point chamber (Polaron). Samples were dried by reaching the critical point of CO₂ by adjusting the temperature and pressure to 34 °C and 80 bars (1200 psi), during 30 min. Dried samples were prepared, stuck on a support and sputter-coated with argon-platinium plasma at 6-7 cm distance and 45 mA intensity for 15 sec in a sputtering chamber (Leica microsystems, EM MED020). Scanning electron micrographs were acquired using a FIB SEM AURIGA compact (Zeiss) at E.H.T.: 1-2 kV.

Data availability. The mutant used in this study is freely available from the *LOREI* insertion mutant collection (https://lotus.au.dk).
Acknowledgements

This work was supported by the CNRS and by the grants ANR-14-CE19-0003 (NOOT) from the Agence National de la Recherche (ANR) to PR. This work has benefited from the facilities and expertise of the Servicio de Microscopía Electrónica Universitat politècnica de Valencia (Spain, http://www.upv.es/entidades/SME/) and of the IMAGIF Cell Biology Unit of the Gif campus (France, www.imagif.cnrs.fr) which is supported by the Conseil Général de l'Essonne. The authors thank Dr. Mathias Brault from the Institute of Plant Sciences Paris-Saclay (France), for providing pFRN:RNAi plasmid, A. rhizogenes ARqua1 strain and control GUS:RNAi construction, and Dr. Simona Radutoiu from the University of Aarhus (Denmark), for providing the Na-Borate/TRIzol RNA extraction protocol. We gratefully thank Dr. Cristina Ferrandiz from the Instituto de Biologia Molecular y Celular de Plantas (Spain), for the help to interpret the identity of the meristems in the SEM pictures and Pr. Frederique Guinel, from the University of Waterloo (Canada), for the help to interpret the identity of L. japonicus nodule vascular tissues. We thank Dr. Julie Hofer from the University of Auckland (New Zealand), for manuscript revision and English language polishing.

Author contributions

P.R. and K.M. conceived the project and designed the experiments. K.M. performed the gene expression analysis, the nodule phenotypes characterization, the histology, the optical microscopy, the LjGEA data mining and the acetylene reduction assays. K.M. and J.G. performed the genotyping and analyzed the aerial phenotypes. K.M. and B.B. performed the RNAi approaches. K.M. and A.B-T performed the SEM. K.M., J.G., A.B-T., B.B. F.M. and PR analyzed the data. S-U. A. generated the L. japonicus LORE1 insertional mutant collection and performed the LORE1 mutant screen. K. M., P. R. and F.M. wrote the article and K.M., P.R., J. G., A.B-T, F.M. and S-U. A. carefully revised the article.
The Plant Journal Supporting Information Figures S1–S6 and Tables S1–S3

Article title: *Lotus japonicus NOOT-BOP-COCH-LIKE1* is essential for nodule, nectary, leaf and flower development

Authors: Kévin Magne, Jeoffrey George, Ana Berbel Tornero, Blandine Broquet, Francisco Madueño, Stig Uggerhøj Andersen and Pascal Ratet

The following Supporting Information are available for this article:

Figure S1 *LjNBCL1* gene expression profile using the *Lotus japonicus* Gene Expression Atlas

Figure S2 *Lotus japonicus PLETHORA1-4* genes expression kinetics during nodulation

Figure S3 *Ljnbcl1* mutation does not affect symbiotic nitrogen fixation

Figure S4 Number of cells separating nodule vascular bundle from infected cells is increased in *Ljnbcl1* mutants

Figure S5 Number of cortex cell layers present in *Ljnbcl1* nodule ectopic root is similar to *L. japonicus* root

Figure S6 *Ljnbcl1* petiole length is increased

Table S1 Oligonucleotides used for *LORE1* insertions genotyping

Table S2 Oligonucleotides used for the *LjNBCL1:RNAi* strategy

Table S3 Oligonucleotides used for qRT-PCR analysis
REFERENCES

Krall, L., Wiedemann, U., Unsin, G., Weiss, S., Domke, N. and Baron, C. (2002). Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in...

Figure 1 *LjNBCL1* gene expression is induced together with symbiotic marker gene expression during nodule development

(a) *LjNBCL1* (grey bars) qRT-PCR relative gene expression analysis during *in vitro* nodulation.
(b) *LjNBCL1* (grey diamonds) qRT-PCR relative gene expression analysis compared to *LjNIN* (blue diamonds), *LjENOD40-1* (green triangles), *LjIPT3* (purple crosses) and *LjLEGH2* (pink squares) qRT-PCR relative gene expression during *in vitro* nodulation. (a-b) qRT-PCR gene expression analysis in *Lotus japonicus* GIFU non-inoculated RAM (0.5 cm, 5 days post stratification: RAM 0 dpi), non-inoculated primary roots devoid of RAM (5 days post stratification: primary root 0 dpi), inoculated primary roots devoid of RAM (2 dpi), inoculated primary roots devoid of RAM with visible nodule primordia (5 dpi) and nodules at 8, 12, 16 and 20 dpi. Plants were inoculated with *M. loti* strain NZP-2235 and 16 plants were used for each point. Gene expressions were normalized against the constitutively expressed *LjSERINE/THREONINE-PROTEIN PHOSPHATASE 2A* (*LjPP2A*) and *LjUBIQUITIN4 CONJUGATING ENZYME* (*LjUBC*) genes and against non-inoculated primary root at 0 dpi. Y axis represents log10 relative gene expression values (log10 fold change). Results represent means ± SEM of three technical replicates and three biological replicates.

Figure 2 LORE1 insertions and RNAi probe positions and effect on *LjNBCL1* transcripts

(a) Scheme of *LjNBCL1* gene encoding a Bric-a-brac Tramtrack, Broad complex, POx virus and Zinc finger (BTB/POZ) and ankyrin repeats protein. Exons are represented by light-grey rectangles. The position of *LORE1* insertions are indicated by triangles and the position of the RNAi sequence (263 bp) used in RNAi approaches is indicated by a double inverted arrowheads.
(b, c) The effect of *LORE1* insertion (b, line 30053558) and RNAi probe (c, line *Ljnbc11:RNAi*) were assessed by measuring the accumulation of *LjNBCL1* transcript by qRT-PCR in 35 dpi nodules inoculated with *M. loti* strain NZP-2235. *LjNBCL1* transcript accumulation in *LORE1* mutant nodules and in hairy-root transformed *L. japonicus* nodules expressing *Ljnbc11:RNAi* construction were compared to wild-type GIFU nodules and to control hairy-root transformed *L. japonicus* nodules expressing an RNAi construct against the *β-GLUCURONIDASE* transcripts (*GUS:RNAi*) respectively. Asterisks indicate significant differences in *LjNBCL1* transcript accumulation, ** indicates a *p*-value < 0.01 and *** indicates a *p*-value < 0.001 (one-way ANOVA test). *LjNBCL1* gene expression was normalized against the constitutively expressed
LjPP2A and LjUBC genes. Results represent means ± SEM of three technical replicates and three biological replicates (b,c).

Figure 3 *Ljnbcl1:LORE1* and *Ljnbcl1:RNAi* show nodule to root conversion phenotype

(a) A Wild-type *L. japonicus* GIFU nodule. (b) A *Ljnbcl1:LORE1* mutant nodule showing nodule to root identity conversion. (c) *L. japonicus* GIFU transformed by hairy root expressing *GUS:RNAi* construction showing a wild-type nodule phenotype. (d) *L. japonicus* GIFU transformed by hairy root expressing *Ljnbcl1:RNAi* showing nodule to root identity conversion. Nodules were obtained following inoculation with *M. loti* strain NZP-2235. (e) Penetration of the nodule to root identity conversion in *Ljnbcl1:LORE1* insertional mutant and in composite plants transformed by hairy root expressing *Ljnbcl1:RNAi* compared to wild-type *L. japonicus* GIFU and *L. japonicus* GIFU plant transformed by hairy root expressing the *GUS:RNAi* construct. *Ljnbcl1:LORE1* insertional mutant and *Ljnbcl1:RNAi* transformed plant nodules presented 4 % and 5 % of nodules converted to root (dark grey bars), respectively. *L. japonicus* GIFU and *GUS:RNAi* transformed nodules showed only wild-type nodules (light grey bars). Results represent percentage means ± SE, error bars for wild-type nodules and nodule to root conversions are indicated in light blue and dark blue, respectively. *L. japonicus* GIFU nodules (115 dpi), n: 1256; *Ljnbcl1:LORE1* insertional mutant nodules (115 dpi), n: 1868; *GUS:RNAi* transformed plant nodules (35 dpi), n: 1307; *Ljnbcl1:RNAi* transformed plant nodules (35 dpi), n: 527. Scale bars (a-d) 500 µm.

Figure 4 *Ljnbcl1* determinate nodule vasculatures connect to ectopic root vasculature and nodule vascular bundle identity is lost

(a-c) Thin longitudinal sections and (d-i) transversal sections of *GUS:RNAi* transformed nodules (a, d, g), *Ljnbcl1:RNAi* transformed nodules (b, e, h) and *Ljnbcl1:LORE1* insertional mutant nodules (c, f, i) inoculated with *M. loti* strain NZP-2235 and stained with toluidine blue. (a, d) *GUS:RNAi* transformed nodules display a globular shape typical of wild-type desmochoiid nodules. Peripheral vascular bundles are closed to the rhizobia infected zone. (b, c) *Ljnbcl1:RNAi* transformed nodules and *Ljnbcl1:LORE1* insertional mutant nodules show ectopic root emerging from the apical part of the nodule. The vasculatures of these ectopic roots are connected to those of the desmochoiid nodules. (e, f) *Ljnbcl1:RNAi* transformed plant nodules and *Ljnbcl1:LORE1* insertional mutant nodules (c, f, i) inoculated with *M. loti* strain NZP-2235 and stained with toluidine blue.
insertional mutant nodules show NVB surrounded by root cortex cell layers that are completely dissociated from the nodule infected zone when compared to those in control GUS:RNAi transformed plant nodules (d). (g, h, i) Thin transversal sections of nodule showing vascular bundles. Left-lower and right-upper corners are respectively oriented toward the interior and exterior of the nodule. (g) L. japonicus GIFU vasculature localize close to the rhizobia infected cells. Wild-type L. japonicus GIFU vascular bundles are composed of an external vascular endodermis cell layer, pericycle cell layers and the bundle containing xylem tissues and parenchyma cells, and phloem tissues composed of sieve elements, companion and parenchyma cells. The bundle organization is collateral with phloem tissues turned toward the exterior of the nodule and the xylem turned toward the infection zone. (h, i) Ljnbc11:RNAi transformed plant and Ljnbc11:LORE1 insertional mutant nodule vasculatures that dissociate from the nodule show changes in NVB cells organization. Xylem tissues tend to align periclinally instead of being turned toward nodule infection zone. GUS:RNAi transformed plant nodules (35 dpi) longitudinal sections, n: 6, transversal sections, n: 6. Ljnbc11:RNAi transformed plant nodules (35 dpi) longitudinal sections, n: 8, transversal sections, n: 12. Ljnbc11:LORE1 insertional mutant nodules (154 dpi) longitudinal sections, n: 12, transversal sections, n: 9. Scale bars: (a, b, c, d, e, f) 100 µm; (g, h, i) 50 µm. Thickness: 5 µm. Ro, root; Nc, nodule cortex; Iz, infected zone; Nvb, nodule vascular bundle; Inf, infected cell; Ve, Vascular endodermis; Pe, pericycle; Ph, phloem; Xy, xylem; Ic, inner cortex; Bc, boundary cell.

Figure 5 LjNBCL1 gene expression in L. japonicus GIFU aerial parts and associated Ljnbc11 mutant aerial phenotypes

(a) LjNBCL1 (grey bars) qRT-PCR relative gene expression analysis in wild-type L. japonicus GIFU aerial vegetative organs. Gene expression analysis was performed in inter nodes, nodes containing nectary glands, leaves, flowers at stages 10, 11, 12 and 13 according to floral stages described in Weng et al., 2011 and in developing pods (≈ 1 cm, without petals and stamen). LjNBCL1 gene expression was normalized against the constitutively expressed LjPP2A and LjUBC genes and against expression in leaf organs. Results represent means ± SEM of three technical replicates and three biological replicates. Samples for repeat one were collected from 80 days old plant, repeat two and three samples were collected from 89 days old plants and pods were sampled from 93 days old plants. (b, c, d) The Ljnbc11 mutant presents a supplementary
distal leaflet (c, black asterisks) compared to *L. japonicus* GIFU (b). The penetrance of this phenotype was assessed and 13 % of *Ljnbc11* mutant leaves are hexa-foliated compared to wild-type penta-foliated leaves (d). Results represent percentage means ± SE. *L. japonicus* GIFU n: 6 plants, 1418 leaves; *Ljnbc11:LORE1* mutant n: 8 plants, 1893 leaves. (e, f) *Ljnbc11* mutant presents supplementary axillaries at the leaf axil (f, yellow asterisks) compared to *L. japonicus* GIFU (e). (g, h) in *L. japonicus* GIFU nectary glands are present at the leaf axil (g, white asterisks), in *Ljnbc11:LORE1* mutant nectary glands are absent (h). (i, j) Scanning electron micrograph (SEM) at leaf axil reveals that no trace of nectary gland formation can be detected in the *Ljnbc11:LORE1* mutant (j) compared to *L. japonicus* GIFU (i, white asterisks). White double headed arrows indicate longer petiole in *Ljnbc11:LORE1* mutant (j) relative to *L. japonicus* GIFU (i). Scale bars: (b, c, e, f) 1 cm; (g, h) 200 µm; (i, j) 100 µm.

Figure 6 *Ljnbc11* mutation dramatically affects flower development

(a) 12 weeks old *L. japonicus* GIFU wild-type flowering plant. (b) 12 weeks old *Ljnbc11:LORE1* mutant without normal flowers. (c, g) Wild-type *L. japonicus* GIFU flowers present 1 to 3 bracts, a pedicel, inflorescence nectary glands at the base of the pedicel, a pedicel, a receptacle, 5 fused sepals, 5 petals, represented by 1 adaxial standard, 2 lateral wings and 2 abaxial fused keels, 10 stamens and a single carpel (Zhang et al., 2003). (d) *Ljnbc11:LORE1* mutant flower presents bracts but instead of floral organs, a unique central trumpet-like organ forms (white arrowhead). In addition, a supplementary cryptic bract forms at the axil of the central organ (yellow asterisks). (e, f) Magnification of the base of the pedicel region showing an inflorescence nectary in *L. japonicus* GIFU (e), and the absence of inflorescence nectaries and the development of a cryptic bract in the *Ljnbc11:LORE1* mutant (f, yellow asterisks). Flowers in pictures c, d, e and f, were collected from 166 days old plants. (g) Wild-type *L. japonicus* GIFU floral diagram (according to Dong et al., 2005). (h) *Ljnbc11:LORE1* mutant floral diagram representing the most complex floral organ combination that can be found in the mutant, four bracts, two cryptic bracts (yellow asterisks) and one central structure (light grey circle, see bellow Figure 7 for central structure). Scale bars: (a, b) 5 cm; (c, d) 1 mm; (e, f) 500 µm. st, stem; in, inflorescence nectary glands; b, bract; pe, pedicel; re, receptacle; s, sepal; sta, standard; w, wing; k, keel; s, stamen; ca, carpel. Black arcs in g represent fused organs.
Figure 7 Gradual Ljnbcl1 mutant flower phenotypes

The Ljnbcl1:LORE1 mutants show various floral phenotypes. The flowers can be absent (a, 24 %), replaced by a prematurely aborted fused trumpet-like structure (b, 6 %) or by a more developed fused trumpet-like structure (c, 11 %). Ljnbcl1:LORE1 flowers can be replaced by leaf-like structure (d, 38 %) or by a more complex leaf-like structure showing organ separations (e, 11 %). Finally, some Ljnbcl1:LORE1 plants show prematurely aborted floral-like structure (f, 7 %) or fully-developed but sterile flowers (g, 3 %). Percentages represent the analysis of 1953 flowers from three individual Ljnbcl1:LORE1 plants (166 days). Scale bars: 1 mm.

Figure 8 Ljnbcl1 mutation severely affects early development of the L. japonicus GIFU inflorescence apex

(a-f) Scanning Electron Microscopy of developing L. japonicus GIFU (a-c) and Ljnbcl1:LORE1 (d-f) inflorescence apex. (a-c) The L. japonicus GIFU primary inflorescence meristem (I1, blue) produces secondary inflorescence meristems (I2, yellow) at the axil of a compound leaf (L, green). Floral primordia (F, red) are partitioned from the degenerating I2 peripheral regions (I2*). Trichome lines mark the formation of floral meristems, as the I2 finally differentiates and become covered by trichomes (I2*). (d-f) In Ljnbcl1:LORE1 mutant inflorescence apex, I1s are present, but normal I2s are not found at the leaf axils and only a line of developing trichomes is observed (I2*, purple) reminiscent of those normally observed in wild-type stage-5 I2. This line of developing trichomes delimits a poorly developed dome that would represent a floral primordium-like structure (F*, red). I2 and floral primordia developmental stages are named according to previous descriptions of L. japonicus GIFU floral and inflorescence ontogeny (Dong et al., 2005; Feng et al., 2006). Scale bars: 50 µm.
Figure 1 *LjNBCL1* gene expression is induced together with symbiotic marker gene expression during nodule development

(a) *LjNBCL1* (grey bars) qRT-PCR relative gene expression analysis during *in vitro* nodulation.

(b) *LjNBCL1* (grey diamonds) qRT-PCR relative gene expression analysis compared to *LjNIN* (blue diamonds), *LjENOD40-1* (green triangles), *LjIPT3* (purple crosses) and *LjLEGH2* (pink squares) qRT-PCR relative gene expression during *in vitro* nodulation. (a-b) qRT-PCR gene expression analysis in *Lotus japonicus* GIFU non-inoculated RAM (0.5 cm, 5 days post stratification: RAM 0 dpi), non-inoculated primary roots devoid of RAM (5 days post stratification: primary root 0 dpi), inoculated primary roots devoid of RAM (2 dpi), inoculated primary roots devoid of RAM with visible nodule primordia (5 dpi) and nodules at 8, 12, 16 and 20 dpi. Plants were inoculated with *M. loti* strain NZP-2235 and 16 plants were used for each point. Gene expressions were normalized against the constitutively expressed *LjSERINE/THREONINE-PROTEIN PHOSPHATASE 2A (LjPP2A)* and *LjUBIQUITIN-CONJUGATING ENZYME (LjUBC)* genes and against non-inoculated primary root at 0 dpi. Y axis represents log10 relative gene expression values (log10 fold change). Results represent means ± SEM of three technical replicates and three biological replicates.
Figure 2 LORE1 insertions and RNAi probe positions and effect on LjNBCL1 transcripts

(a) Scheme of LjNBCL1 gene encoding a Bric-a-brac Tramtrack, Broad complex, POx virus and Zinc finger (BTB/POZ) and ankyrin repeats protein. Exons are represented by light-grey rectangles. The position of LORE1 insertions are indicated by triangles and the position of the RNAi sequence (263 bp) used in RNAi approaches is indicated by a double inverted arrowheads.

(b, c) The effect of LORE1 insertion (b, line 30053558) and RNAi probe (c, line Ljnbc1:RNAi) were assessed by measuring the accumulation of LjNBCL1 transcript by qRT-PCR in 35 dpi nodules inoculated with M. loti strain NZP-2235. LjNBCL1 transcript accumulation in LORE1 mutant nodules and in hairy-root transformed L. japonicus nodules expressing Ljnbc1:RNAi construction were compared to wild-type GIFU nodules and to control hairy-root transformed L. japonicus nodules expressing an RNAi construct against the β-GLUCURONIDASE transcripts (GUS:RNAi) respectively. Asterisks indicate significant differences in LjNBCL1 transcript accumulation, ** indicates a p-value < 0.01 and *** indicates a p-value < 0.001 (one-way ANOVA test). LjNBCL1 gene expression was normalized against the constitutively expressed LjPP2A and LjUBC genes. Results represent means ± SEM of three technical replicates and three biological replicates (b,c).
Figure 3 Ljnbc1:LORE1 and Ljnbc1:RNAi show nodule to root conversion phenotype

(a) A Wild-type *L. japonicus* GIFU nodule. (b) A Ljnbc1:LORE1 mutant nodule showing nodule to root identity conversion. (c) *L. japonicus* GIFU transformed by hairy root expressing GUS:RNAi construction showing a wild-type nodule phenotype. (d) *L. japonicus* GIFU transformed by hairy root expressing Ljnbc1:RNAi showing nodule to root identity conversion. Nodules were obtained following inoculation with *M. loti* strain NZP-2235. (e) Penetrance of the nodule to root identity conversion in Ljnbc1:LORE1 insertional mutant and in composite plants transformed by hairy root expressing Ljnbc1:RNAi compared to wild-type *L. japonicus* GIFU and *L. japonicus* GIFU plant transformed by hairy root expressing the GUS:RNAi construct.
Ljnbc11:LORE1 insertional mutant and Ljnbc11:RNAi transformed plant nodules presented 4% and 5% of nodules converted to root (dark grey bars), respectively. *L. japonicus* GIFU and GUS:RNAi transformed nodules showed only wild-type nodules (light grey bars). Results represent percentage means ± SE, error bars for wild-type nodules and nodule to root conversions are indicated in light blue and dark blue, respectively. *L. japonicus* GIFU nodules (115 dpi), n: 1256; Ljnbc11:LORE1 insertional mutant nodules (115 dpi), n: 1868; GUS:RNAi transformed plant nodules (35 dpi), n: 1307; Ljnbc11:RNAi transformed plant nodules (35 dpi), n: 527. Scale bars (a-d) 500 µm.
Figure 4 *Ljnbc11* determinate nodule vasculatures connect to ectopic root vasculature and nodule vascular bundle identity is lost

(a-c) Thin longitudinal sections and (d-i) transversal sections of *GUS:RNAi* transformed nodules (a, d, g), *Ljnbc11:RNAi* transformed nodules (b, e, h) and *Ljnbc11:LORE1* insertional mutant nodules (c, f, i) inoculated with *M. loti* strain NZP-2235 and stained with toluidine blue. (a, d) *GUS:RNAi* transformed nodules display a globular shape typical of wild-type desmodioïd nodules. Peripheral vascular bundles are closed to the rhizobia infected zone. (b, c) *Ljnbc11:RNAi* transformed nodules and *Ljnbc11:LORE1* insertional mutant nodules show ectopic root emerging from the apical part of the nodule. The vasculatures of these ectopic roots are connected to those of the desmodioïd nodules. (e, f) *Ljnbc11:RNAi* transformed plant nodules and *Ljnbc11:LORE1* insertional mutant nodules show ectopic root emerging from the apical part of the nodule. The vasculatures of these ectopic roots are connected to those of the desmodioïd nodules.
insertional mutant nodules show NVB surrounded by root cortex cell layers that are completely
dissociated from the nodule infected zone when compared to those in control GUS:RNAi
transformed plant nodules (d). (g, h, i) Thin transversal sections of nodule showing vascular
bundles. Left-lower and right-upper corners are respectively oriented toward the interior and
exterior of the nodule. (g) L. japonicus GIFU vasculature localize close to the rhizobia infected
cells. Wild-type L. japonicus GIFU vascular bundles are composed of an external vascular
endodermis cell layer, pericycle cell layers and the bundle containing xylem tissues and
parenchyma cells, and phloem tissues composed of sieve elements, companion and parenchyma
cells. The bundle organization is collateral with phloem tissues turned toward the exterior of the
nodule and the xylem turned toward the infection zone. (h, i) Ljnbc11:RNAi transformed plant and
Ljnbc11:LORE1 mutant nodule vasculatures that dissociate from the nodule show changes in
NVB cells organization. Xylem tissues tend to align periclinally instead of being turned toward
nodule infection zone. GUS:RNAi transformed plant nodules (35 dpi) longitudinal sections, n: 6,
transversal sections, n: 6. Ljnbc11:RNAi transformed plant nodules (35 dpi) longitudinal sections,
n: 8, transversal sections, n: 12. Ljnbc11:LORE1 insertional mutant nodules (154 dpi) longitudinal
sections, n: 12, transversal sections, n: 9. Scale bars: (a, b, c, d, e, f) 100 µm; (g, h, i) 50 µm.
Thickness: 5 µm. Ro, root; Nc, nodule cortex; Iz, infected zone; Nvb, nodule vascular bundle;
Inf, infected cell; Ve, Vascular endodermis; Pe, pericycle; Ph, phloem; Xy, xylem; Ic, inner
cortex; Bc, boundary cell.
Figure 5 *LjNBCL1* gene expression in *L. japonicus GIFU* aerial parts and associated *Ljnbcl1* mutant aerial phenotypes

(a) *LjNBCL1* (grey bars) qRT-PCR relative gene expression analysis in wild-type *L. japonicus* GIFU aerial vegetative organs. Gene expression analysis was performed in inter nodes, nodes containing nectary glands, leaves, flowers at stages 10, 11, 12 and 13 according to floral stages described in Weng *et al.*, 2011 and in developing pods (≈ 1 cm, without petals and stamen). *LjNBCL1* gene expression was normalized against the constitutively expressed *LjPP2A* and *LjUBC* genes and against expression in leaf organs. Results represent means ± SEM of three technical replicates and three biological replicates. Samples for repeat one were collected from 80 days old plant, repeat two and three samples were collected from 89 days old plants and pods were sampled from 93 days old plants. (b, c, d) The *Ljnbcl1* mutant presents a supplementary distal leaflet (c, black asterisks) compared to *L. japonicus* GIFU (b). The penetrance of this phenotype was assessed and 13 % of *Ljnbcl1* mutant leaves are hexa-foliated compared to wild-type penta-foliated leaves (d). Results represent percentage means ± SE. *L. japonicus* GIFU n: 6 plants, 1418 leaves; *Ljnbcl1:LORE1* mutant n: 8 plants, 1893 leaves. (e, f) *Ljnbcl1* mutant
presents supplementary axillaries at the leaf axil (f, yellow asterisks) compared to *L. japonicus* GIFU (e). (g, h) in *L. japonicus* GIFU nectary glands are present at the leaf axil (g, white asterisks), in *Ljnbc11:LORE1* mutant nectary glands are absent (h). (i, j) Scanning electron micrograph (SEM) at leaf axil reveals that no trace of nectary gland formation can be detected in the *Ljnbc11:LORE1* mutant (j) compared to *L. japonicus* GIFU (i, white asterisks). White double headed arrows indicate longer petiole in *Ljnbc11:LORE1* mutant (j) relative to *L. japonicus* GIFU (i). Scale bars: (b, c, e, f) 1 cm; (g, h) 200 μm; (i, j) 100 μm.
Figure 6 Ljnbc11 mutation dramatically affects flower development

(a) 12 weeks old *L. japonicus* GIFU wild-type flowering plant. (b) 12 weeks old *Ljnbc11:LORE1* mutant without normal flowers. (c, g) Wild-type *L. japonicus* GIFU flowers present 1 to 3 bracts, a pedicel, inflorescence nectary glands at the base of the pedicel, a pedicel, a receptacle, 5 fused sepals, 5 petals, represented by 1 adaxial standard, 2 lateral wings and 2 abaxial fused keels, 10 stamens and a single carpel (Zhang *et al.*, 2003). (d) *Ljnbc11:LORE1* mutant flower presents bracts but instead of floral organs, a unique central trumpet-like organ forms (white arrowhead). In addition, a supplementary cryptic bract forms at the axil of the central organ (yellow asterisks). (e, f) Magnification of the base of the pedicel region showing an inflorescence nectary in *L. japonicus* GIFU (e), and the absence of inflorescence nectaries and the development of a cryptic bract in the *Ljnbc11:LORE1* mutant (f, yellow asterisks). Flowers in pictures c, d, e and f, were collected from 166 days old plants. (g) Wild-type *L. japonicus* GIFU floral diagram (according to...
Dong et al., 2005). (h) Ljnbc11:LORE1 mutant floral diagram representing the most complex floral organ combination that can be found in the mutant, four bracts, two cryptic bracts (yellow asterisks) and one central structure (light grey circle, see bellow Figure 7 for central structure). Scale bars: (a, b) 5 cm; (c, d) 1 mm; (e, f) 500 µm. st, stem; in, inflorescence nectary glands; b, bract; pe, pedicel; re, receptacle; s, sepal; sta, standard; w, wing; k, keel; s, stamen; ca, carpel. Black arcs in g represent fused organs.
Figure 7 Gradual *Ljnbc11* mutant flower phenotypes

The *Ljnbc11:LORE1* mutants show various floral phenotypes. The flowers can be absent (a, 24 %), replaced by a prematurely aborted fused trumpet-like structure (b, 6 %) or by a more developed fused trumpet-like structure (c, 11 %). *Ljnbc11:LORE1* flowers can be replaced by leaf-like structure (d, 38 %) or by a more complex leaf-like structure showing organ separations (e, 11 %). Finally, some *Ljnbc11:LORE1* plants show prematurely aborted floral-like structure (f, 7 %) or fully-developed but sterile flowers (g, 3 %). Percentages represent the analysis of 1953 flowers from three individual *Ljnbc11:LORE1* plants (166 days). Scale bars: 1 mm.
Figure 8 Ljnbc11 mutation severely affects early development of the L. japonicus GIFU inflorescence apex

(a-f) Scanning Electron Microscopy of developing L. japonicus GIFU (a-c) and Ljnbc11:LORE1 (d-f) inflorescence apex. (a-c) The L. japonicus GIFU primary inflorescence meristem (I1, blue) produces secondary inflorescence meristems (I2, yellow) at the axil of a compound leaf (L, green). Floral primordia (F, red) are partitioned from the degenerating I2 peripheral regions (I2*).

Trichome lines mark the formation of floral meristems, as the I2 finally differentiates and become covered by trichomes (I2*). (d-f) In Ljnbc11:LORE1 mutant inflorescence apex, I1s are present, but normal I2s are not found at the leaf axils and only a line of developing trichomes is observed (I2*, purple) reminiscent of those normally observed in wild-type stage-5 I2. This line of developing trichomes delimits a poorly developed dome that would represent a floral primordium-like structure (F*, red). I2 and floral primordia developmental stages are named according to previous descriptions of L. japonicus GIFU floral and inflorescence ontogeny (Dong et al., 2005; Feng et al., 2006). Scale bars: 50 µm.