This is the accepted manuscript (post-print version) of the article. Contentwise, the accepted manuscript version is identical to the final published version, but there may be differences in typography and layout.

How to cite this publication
Please cite the final published version:

Publication metadata

Title: Crystal structure of tetrameric human Rabin8 GEF domain
Author(s): M. Vetter, N. Boegholm, A. Christensen et al.
Journal: Proteins
DOI/Link: https://doi.org/10.1002/prot.25455
Document version: Accepted manuscript (post-print)

This is the peer reviewed version of the following article Vetter, M, Boegholm, N, Christensen, A, et al. Crystal structure of tetrameric human Rabin8 GEF domain. Proteins. 2018; 86: 405–413. which has been published in final form at https://doi.org/10.1002/prot.25455. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

General Rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

If the document is published under a Creative Commons license, this applies instead of the general rights.
Crystal structure of tetrameric human Rabin8 GEF domain

Short title: *Crystal structure of tetrameric Rabin8*

Melanie Vetter¹, Niels Boegholm², Anni Christensen², Sagar Bhogaraju¹, Marie B. Andersen², Anna Lorentzen² and Esben Lorentzen²*

¹ Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, Am Klopferspitz 18, D-82152 Martinsried, Germany

² Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark.

Short title: *Crystal structure of tetrameric Rabin8*

* Correspondence to: Assoc. Prof. Esben Lorentzen, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark, Tel: +45 871 55478, E-mail: el@mbg.au.dk

Keywords: cilium, Rabin8, Rab8, guanine nucleotide exchange, crystal structure, tetramer, ciliary targeting complexes
ABSTRACT

Rab GTPases and their effectors, activators and guanine nucleotide exchange factors (GEFs) are essential for vesicular transport. Rab8 and its GEF Rabin8 function in formation of the cilium organelle important for developmental signaling and sensory reception. Here we show by size exclusion chromatography and analytical ultracentrifugation that Rabin8 exists in equilibrium between dimers and tetramers. The crystal structure of tetrameric Rabin8 GEF domain reveals an occluded Rab8 binding site suggesting that this oligomer is enzymatically inactive, a notion we verify experimentally using Rabin8/Rab8 GEF assays. We outline a procedure for the purification of active dimeric Rabin8 GEF-domain for in vitro activity assays.

1. INTRODUCTION

Cilia are organelles that protrude from most eukaryotic cells and serve multiple important functions including motility, signaling and sensory reception. Ciliogenesis relies on the action of several macro-molecular complexes including ciliary targeting complexes, intraflagellar transport (IFT) complexes and complexes of Bardet-Biedl syndrome (BBS) proteins termed BBSome. Transport of Golgi-derived vesicles to the basal-body region and fusion with the plasma membrane is required for cilium formation and delivery of cilium-specific membrane proteins. Rab GTPases are important for membrane identity and several Rabs including Rab8, Rab11 and Rab23, were shown to be required for the process of ciliogenesis and ciliary trafficking. Vesicular transport to the cilium organelle relies on a number of additional factors including Arf4, FIP3, Rabin8, and ASAP1 that dynamically assemble ciliary targeting complexes.
was shown to be involved in the transport of Golgi and recycling endosome-derived vesicles to the plasma membrane1,17-21. Rab11 has numerous effectors including FIP3 and Rabin8 that simultaneously associate with the GTP-bound activated state of Rab11 (Fig. 1a-b)2,7,22. While FIP3 binds to the canonical effector binding site on Rab11, Rabin8 binds at an unusual effector-binding site, which allows for the simultaneous binding of FIP3 and Rabin8 to Rab11-GTP22. Rabin8 contains, in addition to the C-terminal Rab11-binding domain, a central coiled-coil domain that dimerizes and functions as a guanine nucleotide exchange factor (GEF) to activate Rab8 (Fig. 1a-b)15,23. Rab8 is required for the fusion of vesicles at the ciliary base as Rab8 inhibition leads to accumulation of rhodopsin carrying vesicles in photoreceptor cells5,8,15. Interestingly, Rab8 was also recently shown to be required for the delivery of recycling receptors to the immune synapse of T-cells24.

Several studies demonstrated that Rabin8 binds Rab8 to stimulate the release of GDP15,22,23. Recently, it was shown that the Parkinson’s disease kinase LRRK2 phosphorylates a number of Rab GTPases including Rab825,26. Phosphorylation of Rab8 T72 by LRRK2 regulates Rabin8 binding and results in a 4-fold reduction of Rabin8 GEF activity towards Rab825. The crystal structure of the Rabin8:Rab8 complex revealed that two copies of the central Rabin8 GEF domain homo-dimerizes to bind one copy of Rab823. This architecture is consistent with the fact that the C-terminal domain of Rabin8 also homo-dimerizes22.

Some controversy exists with respect to the ability of Rab11 to stimulate the GEF activity of Rabin8 towards Rab8. While one previous study showed that the presence of Rab11 results in an increase in Rabin8 GEF activity towards Rab815, another study did not
observe such a Rab11-mediated activation. Here we demonstrate that Rabin8 exists in equilibrium between active dimers and inactive tetramers. The crystal structure of tetrameric Rabin8 provides a molecular basis for the reduced GEF activity as the Rab8-binding site overlaps with the tetramerization interface. Our data suggest that Rabin8 activity is dependent on the oligomeric state and particular care should be given to purification strategy to obtain reproducible in vitro GEF assay results.

2. MATERIALS AND METHODS

2.1 Purification of Rabin8 protein constructs

Human full length Rabin8 (Rabin8_{FL}), Rabin8_{144-C}, Rabin8_{144-245} (the Rabin8 GEF domain, see Fig. 1a) or Rabin8_{171-245} were over-expressed from pEC vectors with N-terminal tobacco etch virus (TEV) cleavable hexa-histidine tags. 6-9 L of *E. coli* BL21 (DE3), grown in terrific broth medium, were induced with 0.5 mM IPTG overnight at 18 °C. Cells were lysed by sonication in lysis buffer (50 mM phosphate pH 7.5, 150 mM NaCl, 10% glycerol, 5 mM MgCl₂ and 5 mM beta-mercaptoethanol. Purification was carried out by loading the lysate onto a 5 mL HisTrap HP column (GE healthcare), which was equilibrated in lysis buffer supplemented with 10 mM imidazole. Subsequently the column was washed with 5-10 column volumes (CVs) of lysis buffer with the addition of 1 M NaCl. To remove heat shock protein contaminants at least 10-15 CVs of heat shot protein removal buffer (50 mM Tris pH 7.5, 50 mM KCl, 10 mM MnCl₂ and 2 mM ATP) was applied to the Ni²⁺ column, followed by a final 1-2 CVs wash with lysis buffer. Bound proteins were eluted with a gradient of 10-500 mM imidazole (added to the lysis buffer). The elution peak containing Rabin8 protein was combined and dialyzed.
overnight at 4°C in buffer A (20 mM Tris pH 7.5, 50 mM NaCl, 5 mM MgCl₂ and 1 mM DTT) with the addition of 1 mg of TEV protease to cleave the His-tag.

The Rabin8 protein was then loaded onto a Q-sepharose ion exchange chromatography column and eluted with a 50-1000 mM NaCl gradient. Eluted Rabin8 protein was pooled, concentrated to 5-8 mg/ml and spun for 10 min at 15,000 g in a tabletop centrifuge to remove any precipitation before loading 200 μL onto a 10/300 GL Superdex200 (GE healthcare) gelfiltration column. Although Rabin8_{GEF} is only 11 kDa in size, the molecule is highly elongated, and we thus recommend the Superdex200 rather than a Superdex75 column to achieve the necessary resolution to separate dimers from tetramers. If the dimer and tetramer peaks are not well separated on the Superdex200 column, we recommend cleaning the column with 1 CV of 0.5 M NaOH followed by re-equilibration before usage. Rabin8 protein constructs were eluted during the final SEC purification step in a buffer containing 10 mM Hepes pH 7.5, 150 mM NaCl, 2 mM DTT and 5 mM MgCl₂. Fractions corresponding to dimers and tetramers were kept separate and overlap regions between the two peaks were avoided when combining samples for GEF assays. Concentrations were measured for all fractions and relevant fractions combined to achieve the necessary concentration for GEF assays and pull-downs experiments (concentrating the protein at this stage should be avoided). The Rabin8_{GEF} protein construct does not contain a tryptophan and it is thus important to take the relatively low extinction coefficient of 0.127 into account when assessing the protein concentration.
2.2 Crystallization, data collection and refinement of the tetrameric Rabin8 structure

Crystals of tetrameric Rabin8 GEF domain were obtained by mixing protein in SEC buffer (see above) at a concentration of 10 mg/ml with a precipitant solution containing 50 mM Tris pH 7.3 and 40% MPD in sitting drop vapour diffusion experiments using 96-well polystyrene Greiner plates. Crystals appeared after 4 days at 18 °C and, as the crystallization condition also constituted a cryo protection condition, could be directly cooled in liquid nitrogen. X-ray diffraction data were collected from native crystals at the Swiss Light Source and processed to 2.45Å resolution with XDS \(^\text{27}\) (see Table I). The native Patterson function showed a large none origin peak (36% of origin peak height), indicative of translational pseudo symmetry (likelihood of not having translational pseudo symmetry is \(5.5 \times 10^{-4}\) according to the Phenix Xtriage program \(^\text{28}\)). Phases for the structure factors were obtained by soaking crystals in mother liquor containing 1 mM AuCN overnight and flash cooled in liquid nitrogen before collecting single anomalous dispersion data to 2.75Å resolution. The anomalous signal extended to 3.4Å resolution and was used in Phenix autosol \(^\text{28}\) to locate 4 gold ions and calculate initial phases with a figure of merit of 0.324 for the entire 45-2.75Å resolution range. Density modification with 56% solvent content and four fold NCS averaging was carried out as part of the autosolve procedure in Phenix, which produced an initial electron density map into which Rabin8\(_\text{GEF}\) helices were placed (Fig. S3). An initial model containing four Rabin8\(_\text{GEF}\) monomers was built in the experimental map using Coot \(^\text{29}\) and the structure refined against the native data in Phenix refine \(^\text{28}\) using NCS torsion angle restraints, secondary structure restraints and four groups for each Rabin8 chain in TLS refinement but without
real space refinement. Waters were placed manually into spherical densities with plausible hydrogen-bonding networks. The structure was completed by iterative cycles of building and refinement against the native data.

2.3 Analytical ultracentrifugation

Sedimentation velocity data were collected using an Optima XL-I analytical ultracentrifuge (Beckman) equipped with an An-60 Ti rotor and double-sector epon centerpieces. Full length and truncated Rabin8 was buffered with 10 mM HEPES, pH 7.5, 150 mM NaCl, 5 mM MgCl₂, and 2 mM TCEP at concentrations of 0.4 or 4 mg/ml. Buffer densities and viscosities were determined with a DMA 5000 densitometer and an AMVn viscosimeter (Anton Paar). Protein concentration distribution at room temperature was monitored at 280 nm at 235.000 g. Time-derivative analysis was computed with the SEDFIT package, version 12.1b ⁴⁰, to determine a c(s) distribution and estimate molecular weights Mf.

2.4 GST-Rab8 pulldown of Rabin8

200 µl of 10 µM GST-tagged human Rab8 protein was immobilised on 20 µl of GSH-affinity resin using a binding buffer containing 20 mM TrisHCl pH 7.5, 150 mM NaCl, 5 mM MgCl₂, 5% glycerol and 2 mM DTT and incubated for 2h at 4 °C on a rotating wheel. The resin was collected by centrifugation (500 g, 4 °C), and washed one time with binding buffer. 200 µl of 20 µM WT or mutant dimeric Rabin8_{GEF} was added to the beads followed by incubation for 2h at 4 °C on a rotating wheel and 3x washing with 1 mL of
binding buffer. Bound protein was eluted with 40 µl of binding buffer containing 20 µM reduced glutathione and analysed by SDS-PAGE.

2.5 Nucleotide exchange assays

GEF assays were always carried out with freshly purified Rabin8\textsubscript{GEF} by combining fractions from dimer or tetramer peaks as soon as they eluted from the SEC column without concentration of the sample. To measure Rabin8 GEF activity towards Rab8, nucleotide free Rab8\textsubscript{a1-183} was incubated with a 1.5-fold molar excess of 2'(3')-O-(N-methylanthraniloyl)-GDP (mant-GDP, Jena Bioscience) for 2 h at room temperature. The excess of mant-GDP was removed by a Micro Bio-Spin column (BioRad). 1 µM mant-GDP–bound Rab8 was incubated for 30 min at 20 °C with 3 µM purified Rabin8\textsubscript{GEF} in a buffer containing 30 mM Tris, pH 7.5, 5 mM MgCl\textsubscript{2}, 3 mM DTT and 10 mM potassium phosphate, pH 7.4 (total volume of 50 µL for experiments shown in Figs. 4 and 6; 300 µL for the experiments in Fig. 5). The nucleotide-exchange reaction was initiated by addition of 1 mM GTP. The dissociation of mant-GDP from Rab8 was measured in a quartz Hellman cuvette without stirring using a fluorescence spectrometer from PerkinElmer (Figs. 4 and 6, monochrometer slit width of 5 mm) or Photon Technology International (Fig. 5, monochrometer slit with of 4 mm) with 366 nm excitation and 450 nm emission at 20 °C. Fluorescence emission was read out every 2 s for a total of 300 s for the experiments shown in Figs. 4 and 6 or every 1 s for a total of 600 s for the experiments shown in Fig. 5. The relative fluorescence data were fitted to a one-phase exponential-decay equation without constraints using nonlinear regression and the resulting observed rate constants (k\textsubscript{obs}) were calculated with Prism 6.0. The quantifications of Rabin8 GEF
activity shown in Figs. 4b and 6c were calculated for three independent experiments (five independent experiments for 5c) and displayed as average values and standard deviations.

3. RESULTS

3.1 Rabin8 forms homo-dimers and homo-tetramers in vitro

During the purification of recombinantly expressed human Rabin8 GEF domain (Fig. 1a, residues 144-245, hereafter referred to as Rabin8$_{GEF}$), we noticed that the protein reproducibly eluted from size exclusion chromatography (SEC) in two distinct peaks suggestive of different oligomeric states (Fig. 1c). When analyzed by SDS-PAGE, both SEC peaks were shown to contain the ~11 kDa Rabin8$_{GEF}$ domain (Fig. 1d). Over-night storage of separately combined Rabin8$_{GEF}$ SEC peaks resulted in the reappearance of a double peak demonstrating interconvertibility of the two forms (Fig. S1). Rabin8$_{GEF}$ is known to bind Rab8 in a trimeric complex containing a homo-dimer of Rabin8$_{GEF}$ and one subunit of Rab8. Consistent with this notion, we found that a complex of Rabin8$_{GEF}$ incubated over-night with excess Rab8$_{1-183}$(T22N) eluted in SEC as a single peak located between the two peaks of Rabin8$_{GEF}$ (Fig. 1c). This result demonstrated that the presence of Rab8 prevents the formation of the higher molecular weight (Mw) oligomeric state of Rabin8$_{GEF}$.

Next, we characterized the two Rabin8 states using the complementary method of velocity sedimentation analytical ultracentrifugation (AUC), which provides quantitative data of better resolution than SEC. Consistent with a 2:1 architecture of the Rabin8-Rab8 complex, we observed a Mw of 42kDa for the Rabin8$_{GEF}$:Rab8 complex (Fig. 1e and S2a). As Rabin8$_{GEF}$ does not contain a tryptophan residue, we could not detect this
construct by AUC. However, a longer construct of Rabin8144-C containing both the GEF and the C-terminal domains was subjected to AUC (Fig. S2b). Measured sedimentation coefficients are consistent with a mixture of Rabin8144-C homo-dimers and homo-tetramers (Fig. 1e and S2b). Rabin8FL also displayed a sedimentation coefficient distribution consistent with both dimers and tetramers in AUC (Fig. 1e and S2c). As the C-terminal Rabin8 domain alone (without the presence of the GEF domain) was previously shown to form a homo-dimer by AUC, we conclude that the central GEF domain of Rabin8 is responsible for the observed dimer-tetramer equilibrium.

3.2 Rabin8GEF tetramer crystal structure

To elucidate the molecular basis of Rabin8 tetramerization, purified Rabin8GEF was crystallized and the structure determined at 2.45Å resolution. Molecular replacement with monomeric or dimeric Rabin8GEF from the previously determined Rabin8-Rab8 structure (pdb code 4LHX) failed, possibly due to conformational changes and the presence of translational non-crystallographic symmetry. Consequently, we determined the structure of Rabin8GEF experimentally from single anomalous dispersion data collected on a gold derivative. Experimentally derived electron density clearly revealed the presence of four interacting helices suggesting a tetrameric structure (Fig. S3). Four Rabin8GEF molecules, each consisting of one long ~100 residue α-helix, were built into the electron density of the asymmetric unit and refined against native X-ray diffraction data to yield a model with good geometry and an Rfree of 30.5% (see Table I). The relatively high Rfree is likely a result of strong translational non-crystallographic symmetry.
The crystal structure revealed that the Rabin8\textsubscript{GEF} tetramer forms an elongated complex with overall dimensions of 200x30x20 Å3 (Fig. 2). In the Rabin8\textsubscript{GEF} tetramer, two parallel dimers interact in an anti-parallel fashion (Fig. 2a). This tetramerization mode requires partial opening of the Rabin8\textsubscript{GEF} dimers, where the ~50 most N-terminal residues of one Rabin8\textsubscript{GEF} dimer unzips to engage in contacts with a second unzipped Rabin8\textsubscript{GEF} dimer. This results in a large conformational change of the N-terminal part of the Rabin8\textsubscript{GEF} tetramer when compared to the dimeric Rabin8\textsubscript{GEF} as shown in Fig. 2b. Whereas the C-terminal parts of tetrameric and dimeric Rabin8\textsubscript{GEF} superpose well (0.5 Å rmsd between C-alpha atoms of residues 205-225), the N-terminal parts (residues 157-190) deviate significantly in conformation (more than 10Å from residue 157 in dimeric and tetrameric Rabin8, see Fig. 2b). Residues that interact to form the N-terminal coiled-coil domain of dimeric Rabin8\textsubscript{GEF} are positioned too far from each other to interact directly in the tetramer. Instead, these residues engage in interactions with residues of the neighboring dimer thus participating in tetramerization (Fig. 2b). Each Rabin8\textsubscript{GEF} monomer interacts with the other three monomers mainly via hydrophobic interactions (Fig. 2c), burying a total surface area of ~2750Å2 per monomer. The dimer/tetramer equilibrium of Rabin8 is thus likely mediated by zipping/unzipping of the N-terminal region of the coiled-coil GEF domain. The fully zipped Rabin8 adopts a dimeric structure whereas one partially unzipped Rabin8 dimer interacts with a second partially unzipped Rabin8 dimer to form a tetramer.
3.4 GEF activity towards Rab8 is strongly reduced for tetrameric Rabin8\textsubscript{GEF}

Rabin8 mediates the nucleotide exchange (GDP to GTP) of Rab8 through recruitment of Rab8 to the central part of the Rabin8 GEF domain (residues ~189-207, ref. 23). Interestingly, in the tetrameric Rabin8 GEF domain structure presented here, the two potential Rab8 binding sites are effectively occluded (Fig. 3a). In the tetrameric Rabin8\textsubscript{GEF} structure, the Rab8 binding site is occupied by the N-terminal 20 amino acids (residues 150-170) of the neighboring Rabin8\textsubscript{GEF} dimer (Fig. 3a). Most of the Rab8-interacting residues instead interact with the second Rabin8\textsubscript{GEF} dimer in tetrameric Rabin8 (Fig. 3b-c). The structural analysis presented in Fig. 3 thus suggests that tetrameric Rabin8 is inactive as a GEF towards Rab8 because of steric reasons. To test this notion experimentally, we prepared dimeric or tetrameric Rabin8\textsubscript{GEF} by SEC (Fig. 1c) and immediately carried out GEF assays where the exchange of fluorescently labeled Mant-GDP by GTP was followed over time (Fig. 4). The Rabin8\textsubscript{GEF} dimer showed robust GEF activity 13X higher than the intrinsic GDP exchange (Fig. 4). In comparison, the GEF activity of tetrameric Rabin8\textsubscript{GEF} was only 3X higher than the intrinsic activity (Fig. 4). This result demonstrates that tetrameric Rabin8 is significantly less active as a GEF towards Rab8 than dimeric Rabin8. The fact that tetrameric Rabin8\textsubscript{GEF} GEF activity is higher than the intrinsic Rab8 exchange activity (Fig. 4) may be a result of interconverted dimeric Rabin8\textsubscript{GEF} formed during the ~1 h it takes to complete the SEC and GEF assays. Altogether, the data of Figures 3-4 support the notion that the Rabin8 tetramer has an occluded Rab8-binding site with significantly reduced GEF activity.
3.5 Residues 145-170 are required for Rabin8\textsubscript{GEF} tetramerization but not for GEF activity

The structural analysis of Rabin8\textsubscript{GEF} presented in Figures. 2-3 suggests that residues 150-170 of Rabin8 are required for tetramerization but not for Rab8 binding. To test this notion experimentally, a shorter Rabin8\textsubscript{171-245} construct was recombinantly expressed and purified (Fig. 5a). In agreement with the structural prediction, Rabin8\textsubscript{171-245} gave a single peak in SEC consistent with a dimeric state (compare Figures 1c and 5a). The absence of the second peak demonstrates that tetramerization is effectively abolished for this construct. Given that residues 190-210 of Rabin8 constitutes the Rab8-binding site, Rabin8\textsubscript{171-245} is predicted to retain full GEF activity towards Rab8. To test this notion experimentally we carried out GEF assays using the Rabin8\textsubscript{171-245} construct (Fig. 5b-c). The results show that Rabin8\textsubscript{171-245} increases the exchange rate of Rab8 GDP by 25X in comparison to the intrinsic rate (Fig. 5c). The fact that the measured exchange rate is higher than for dimeric Rabin8\textsubscript{GEF} (Fig. 4b) may reflect that Rabin8\textsubscript{171-245} is strictly dimeric and does not convert into inactive tetramers during the course of the GEF experiment. The crystal structure of tetrameric Rabin8 presented in Figs. 2-3 thus allows for structure-based predictions regarding activity and oligomeric state of Rabin8 constructs. Altogether, the data presented in Fig. 5 demonstrate that residues 145-170 of Rabin8 are required for tetramerization but not for GEF activity towards Rab8.

3.6 Mutational analysis of the Rab8 binding site of Rabin8

Although the Rabin8:Rab8 crystal structure is known23, a comprehensive mutational study of Rab8-binding residues in Rabin8 has not been carried out. To elucidate the
importance of Rabin8 residues involved in Rab8 association and nucleotide exchange, we
mutated interface residues in Rabin8\textsubscript{GEF} to alanines and purified the variants (E192A,
L196A, T197A, F201A or M207A, see Fig. 3b and 6a). All five tested point mutants of
Rabin8\textsubscript{GEF} displayed dimer/tetramer equilibriums in SEC similar to the WT protein (data
not shown), which demonstrated that none of the mutations abolished tetramer formation.
This is consistent with the fact that tetramerization relies on residues 145-170 located N-
terminally to the Rab8-bindsing site (Fig. 2b). To evaluate the impact of these mutations
on GEF activity and Rab8-binding, the SEC peaks corresponding to dimeric Rabin8\textsubscript{GEF}
mutants were pooled for each point mutant and used for pull-down and GEF activity
assays (Fig. 6). L196 of Rabin8 makes hydrophobic interactions with F70 and Y77 of
Rab8 and the Rabin8\textsubscript{GEF} L196A mutant had only marginally reduced affinity for Rab8
(Fig. 6a). GEF activity was also only marginally impaired and showed only a 15%
reduction compared to WT Rabin8 (Fig. 6b-c). T197 of Rabin8 makes a hydrogen bond
with Y77 of Rab8 and mutation to alanine reduced Rab8-binding slightly and GEF
activity by \(~30\%\). More severe is the M207A mutation that still bound Rab8 but had 3-4
fold reduced GEF activity compared to WT. M207 makes hydrophobic contacts with F37
of the switch I region of Rab8 and may be involved in the GDP release mechanism.
Mutation of F201, that interacts with I43, F37 and W62 of Rab8, to alanine completely
abolished Rab8 binding and reduced GDP exchange activity to intrinsic Rab8 levels.
Similarly, E192, that interacts with switch II of Rab8, was absolutely required for Rab8-
interaction and Rabin8 assisted GDP->GTP exchange (Fig. 6). The results from this
mutational analysis of Rabin8\textsubscript{GEF} are in agreement with the Rab8:Rabin8 crystal structure
previously published \(^{23}\) and pinpoints residues important for Rabin8 GEF activity.
4. DISCUSSION

Here we demonstrate that Rabin8 exists in equilibrium between dimers and tetramers \textit{in vitro}. The tetramerization of Rabin8 relies on the central coiled-coil GEF domain of which we determine the crystal structure to provide a molecular basis for tetramerization. Activity assays with dimeric and tetrameric Rabin8 GEF domains demonstrate that tetramerization of Rabin8 results in strongly reduced GEF activity towards Rab8 when compared to dimeric Rabin8 GEF activity. Our crystal structure suggests that the reason for the reduced activity is steric hindrance resulting in an occluded Rab8 binding site in tetrameric Rabin8. Based on the structural data, we designed a Rabin8\textsubscript{171-245} truncation where tetramerization residues were deleted. This construct is strictly dimeric and, as expected, has full GEF activity.

These findings have implications for the reproducibility of Rabin8 GEF assays where different results will be obtained depending on the ratio of dimer/tetramer of the Rabin8 preparation used. Rabin8 prepared without a SEC purification step or using a SEC column with insufficient resolution to separate the two oligomeric states will give lower apparent GEF activity than dimeric Rabin8 purified by SEC. Additionally, given that purified dimeric Rabin8 converts back into a dimer/tetramer mixture over time (Fig. S1), purified Rabin8 will display different GEF activities depending on time of storage. These observations may account for the different Rabin8 GEF activities reported in the literature. We thus recommend the procedure outlined in Materials & Methods to obtain reproducible results in Rabin8:Rab8 GEF assays.
References

Acknowledgements

We thank the staff at the Swiss light source for assistance with X-ray diffraction data collection, and the crystallization facility at the Max Planck Institute of Biochemistry for access to crystallization screening. We are also grateful to Dr. Stefan Uebel from the microchemistry Core Facility at the Max Planck Institute for analyzing proteins by analytical ultracentrifugation. We thank the Novo Nordisk Foundation (grant no. NNF15OC0014164) for funding. Structural coordinates have been deposited at PDB with the accession code 6F6P.

Figure legends

Fig.1: a, domain architecture of human Rabin8 with GEF and C-terminal Rab11 binding domains is indicated. b, Schematic representation of the interaction network of dimeric Rabin8 with different proteins shown in different colors. c, SEC elution profile of Rabin8_{GEF} (blue line) and the Rabin8_{GEF}-Rab8_{1-183}(T22N) complex (purple). d,
Coomassie stained SDS-PAGE gel of the fractions from c indicated with the dashed lines. e, Table showing results from sedimentation velocity ultracentrifugation experiments (see also Fig. S2). Calculated and experimentally determined Mw values for various Rabin8 constructs and complexes are tabulated.

Fig. 2: a, Cartoon representation of the Rabin8gef tetrameric structure in two perpendicular representations. Each of the two dimers forming the tetramer is shown in different colors. b, Cartoon representation of dimeric (grey) and tetrameric (cyan and magenta) Rabin8gef after superpositioning the C-terminal residues of the molecules (residues 205-225). N–terminal residues that deviate by more than 10Å in the two structures are shown as sticks and labeled. c, Zoom in on the tetramerization interface reveals that mainly hydrophobic interactions hold the complex together.

Fig. 3: a, Cartoon representation of tetrameric Rabin8 and Rab8-Rabin8 complex structures after superpositioning. The position of Rab8 in the Rab8-Rabin8 structure clashes with the Rabin8 helix of the neighboring Rabin8 dimer making Rab8 binding mutually exclusive with Rabin8 tetramer formation. b, Zoom in on the Rab8 binding site on Rabin8 with interacting residues shown as sticks. c, Zoom in on the Rabin8 tetramer region representing the Rab8 binding site shown in panel b. The Rab8-interacting residues of Rabin8 are engaged in interactions with the neighboring dimer in the tetrameric Rabin8 structure.
Fig. 4: **a**, Rab8 GEF assay following the exchange of mant-GDP by GTP over time. Rab8 with the addition of buffer only (purple line, intrinsic Rab8 exchange activity), dimeric Rabin8GEF (blue line) or tetrameric Rabin8GEF (orange line) were used in the GEF assay. **b**, Quantification of the exchange rate for the GEF assay shown in panel **a**. Error bars represent standard deviation from 3 independent experiments.

Fig 5: **a**, SEC elution profile of Rabin8_{171-245} (top) and Coomassie stained SDS-PAGE gel of peak fractions (bottom). The same SEC column was used as for Fig. 1c and the elution profiles are thus directly comparable. **b**, Rab8 GEF assay following the exchange of mant-GTP by GTP. Intrinsic exchange (purple line) or the Rabin8_{171-245} catalyzed exchange Rabin8_{171-245} (blue line) were assayed. The experiments were carried out using a different experimental setup compared to Figs. 4 and 6 as detailed in the materials and methods section. **c**, Quantification of the exchange rate for the GEF assay shown in panel **b**. Error bars represent standard deviation from 5 independent experiments.

Fig. 6: **a**, GST-tagged Rab8 was used to pull down WT or single point mutant variants of Rabin8_{GEF}. Proteins are visualized on a coomassie stained SDS-PAGE gel. **b**, Rab8 GEF assay using WT or point-mutant variants of Rabin8_{GEF}. Each point mutant is represented by a unique color. **c**, Quantification of the GEF assay shown in panel **b**. Error bars represent standard deviation from 3 independent experiments.
Fig. 1: a, domain architecture of human Rabin8 with GEF and C-terminal Rab11 binding domains is indicated. b, Schematic representation of the interaction network of dimeric Rabin8 with different proteins shown in different colors. c, SEC elution profile of Rabin8GEF (blue line) and the Rabin8GEF-Rab81-183(T22N) complex (purple). d, Coomassie stained SDS-PAGE gel of the fractions from c indicated with the dashed lines. e, Table showing results from sedimentation velocity ultracentrifugation experiments (see also Fig. S2). Calculated and experimentally determined Mw values for various Rabin8 constructs and complexes are tabulated.
Fig. 2: a, Cartoon representation of the Rabin8GEF tetrameric structure in two perpendicular representations. Each of the two dimers forming the tetramer is shown in different colors. b, Cartoon representation of dimeric (grey) and tetrameric (cyan and magenta) Rabin8GEF after superpositioning the C-terminal residues of the molecules (residues 205-225). N-terminal residues that deviate by more than 10Å in the two structures are shown as sticks and labeled. c, Zoom in on the tetramerization interface reveals that mainly hydrophobic interactions hold the complex together.

166x140mm (300 x 300 DPI)
Fig. 3: a, Cartoon representation of tetrameric Rabin8 and Rab8-Rabin8 complex structures after superpositioning. The position of Rab8 in the Rab8-Rabin8 structure clashes with the Rabin8 helix of the neighboring Rabin8 dimer making Rab8 binding mutually exclusive with Rabin8 tetramer formation. b, Zoom in on the Rab8 binding site on Rabin8 with interacting residues shown as sticks. c, Zoom in on the Rabin8 tetramer region representing the Rab8 binding site shown in panel b. The Rab8-interacting residues of Rabin8 are engaged in interactions with the neighboring dimer in the tetrameric Rabin8 structure.
Fig. 4: a, Rab8 GEF assay following the exchange of mant-GDP by GTP over time. Rab8 with the addition of buffer only (purple line, intrinsic Rab8 exchange activity), dimeric Rabin8GEF (blue line) or tetrameric Rabin8GEF (orange line) were used in the GEF assay. b, Quantification of the exchange rate for the GEF assay shown in panel a. Error bars represent standard deviation from 3 independent experiments.
Fig 5: a, SEC elution profile of Rabin8171-245 (top) and Coomassie stained SDS-PAGE gel of peak fractions (bottom). The same SEC column was used as for Fig. 1b and the elution profiles are thus directly comparable. b, Rab8 GEF assay following the exchange of mant-GTP by GTP. Intrinsic exchange (purple line) or the Rabin8171-245 catalyzed exchange Rabin8171-245 (blue line) were assayed. The experiments were carried out using a different experimental setup compared to Figs. 4 and 6 as detailed in the materials and methods section. c, Quantification of the exchange rate for the GEF assay shown in panel b. Error bars represent standard deviation from 5 independent experiments.
Fig. 6: a, GST-tagged Rab8 was used to pull down WT or single point mutant variants of Rabin8GEF. Proteins are visualized on a coomassie stained SDS-PAGE gel. b, Rab8 GEF assay using WT or point-mutant variants of Rabin8GEF. Each point mutant is represented by a unique color. c, Quantification of the GEF assay shown in panel b. Error bars represent standard deviation from 3 independent experiments.
Table I. Data collection and refinement statistics.

<table>
<thead>
<tr>
<th></th>
<th>Rabin8_GEF Native data (PDB: 6F6P)</th>
<th>SAD data (AuCN soak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (Å)</td>
<td>1.0000</td>
<td>1.0376</td>
</tr>
<tr>
<td>Resolution range (Å)</td>
<td>68.6-2.45 (2.49-2.45)</td>
<td>45-2.75 (2.91-2.75)</td>
</tr>
<tr>
<td>Space group</td>
<td>P 21 21 21</td>
<td>P 21 21 21</td>
</tr>
<tr>
<td>Unit cell</td>
<td>47.3 77.0 137.3 90 90 90</td>
<td>46.6 77.3 137.0 90 90 90</td>
</tr>
<tr>
<td>Total reflections</td>
<td>166182 (8456)</td>
<td>344821 (50985)</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>19008 (962)</td>
<td>24768 (3925)</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>8.7 (8.7)</td>
<td>13.9 (13.0)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>99.8 (99.2)</td>
<td>99.7 (98.0)</td>
</tr>
<tr>
<td>Mean I/sigma(I)</td>
<td>11.2 (2.2)</td>
<td>19.4 (3.5)</td>
</tr>
<tr>
<td>Wilson B-factor</td>
<td>42.1</td>
<td>52.6</td>
</tr>
<tr>
<td>R-merge</td>
<td>0.094 (1.12)</td>
<td>0.118 (0.929)</td>
</tr>
<tr>
<td>R-pim</td>
<td>0.033 (0.382)</td>
<td>0.043 (0.316)</td>
</tr>
<tr>
<td>CC1/2</td>
<td>0.998 (0.872)</td>
<td>1.00 (0.940)</td>
</tr>
<tr>
<td>Anomalous correlation > 30%</td>
<td>N/A</td>
<td>45-3.4 Å</td>
</tr>
<tr>
<td>R-work</td>
<td>0.271 (0.362)</td>
<td>N/A</td>
</tr>
<tr>
<td>R-free</td>
<td>0.305 (0.435)</td>
<td>N/A</td>
</tr>
<tr>
<td>Number of non-hydrogen atoms</td>
<td>3137</td>
<td>N/A</td>
</tr>
<tr>
<td>Number of macromolecular atoms</td>
<td>3003</td>
<td>N/A</td>
</tr>
<tr>
<td>ligands</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>water</td>
<td>368</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Protein residues</td>
<td>381</td>
<td>N/A</td>
</tr>
<tr>
<td>RMS(bonds) / Å</td>
<td>0.003</td>
<td>N/A</td>
</tr>
<tr>
<td>RMS(angles)/°</td>
<td>0.64</td>
<td>N/A</td>
</tr>
<tr>
<td>Ramachandran favored (%)</td>
<td>99.7</td>
<td>N/A</td>
</tr>
<tr>
<td>Ramachandran outliers (%)</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>Clashscore</td>
<td>3.8</td>
<td>N/A</td>
</tr>
<tr>
<td>Average B-factor (Å²)</td>
<td>79.70</td>
<td>N/A</td>
</tr>
<tr>
<td>macromolecules</td>
<td>79.90</td>
<td>N/A</td>
</tr>
<tr>
<td>ligands</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>solvent</td>
<td>75.10</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Statistics for the highest-resolution shell are shown in parentheses.