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Abstract

The theory of single upper and lower tolerances for combinatorial minimization
problems was formalized in 2005 for the three types of cost functions sum,
product, and maximum, and since then it has shown to be rather useful in
creating heuristics and exact algorithms. However, such single tolerances are
often used because the assessment of multiple cost changes is considered too
complicated. This paper addresses that issue. In this paper we extend this
theory from single to set tolerances for these three types of cost functions. In
particular, we characterize specific values of set upper and lower tolerances as
positive and infinite, and we show a criterion for the uniqueness of an optimal
solution to a combinatorial minimization problem. Furthermore, we present one
exact formula and several bounds for computing set upper and lower tolerances
using the relation to their corresponding single tolerance counterparts.

Keywords: Sensitivity analysis, Combinatorial optimization, Single tolerance,
Set tolerance

1. Introduction

The notion of tolerances originates from sensitivity analysis of combinatorial
minimization problems [7, 8, 15, 32], which is a well-established topic in linear
programming [8] and mixed integer programming [15]. The notion of single tol-
erance corresponds to the most elementary topic of sensitivity analysis, namely
the special case when the value of a single element in a feasible solution is subject
to an additive change. More precisely, for an element in a given optimal solution,
its single upper tolerance determines the maximum additive increase of the indi-
vidual cost of this given element preserving the optimality of this solution, while
keeping the costs of other elements unchanged. Analogously, for an element not
in a given optimal solution, its single lower tolerance determines the maximum
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additive decrease of the individual cost of this given element preserving the opti-
mality of this solution, while keeping the costs of other elements unchanged. So
the tolerance is a measure of stability of optimal solutions. Efficient methods
for computing (single) tolerances have been presented for the following com-
binatorial minimization problems: for the Minimum Spanning Tree Problem
(MSTP) [5, 19, 33], the TSP [23], the Linear Assignment Problem (LAP) [36],
network flow problems [16, 30], shortest path problems [27, 30], scheduling prob-
lems [18], the Maximum Capacity Problem [27], and linear forms [31]. The first
successful implicit application of (upper) tolerances in algorithm design has ap-
peared in the so-called Vogel’s Approximation Method for the Transportation
Simplex Problem [28]. Furthermore, tolerances have been used for a straight-
forward enumeration of the k-best solutions for some natural k for the Linear
Assignment Problem [25] and the TSP [26] as well as a base of the Max-Regret
heuristic for solving the Three-Index Assignment Problem [1].
The theory of single tolerances has been formalized by Goldengorin, Jäger, Moli-
tor [11, 12] for three different types of cost functions, namely of types sum,
product and maximum. Based on this theory, effective heuristics and exact al-
gorithms have been created and implemented [6, 9, 10, 13, 14, 20, 29, 34] for
the TSP as well as for related problems [2, 17, 22], proving the usefulness of the
concept of tolerances. In 2010, Libura introduced and investigated the so-called
robustness tolerance [24] where one not only determines for which changes a
solution remains optimal, but also where it remains robust, i.e., gives the lowest
regret. However, this is not a topic of this paper.
One disadvantage of using single tolerance values is that they only apply to
changes in single parameter values. We cannot consider the effect of multiple
parameter changes. Such multiple parameter changes are relevant in sensitivity
analysis, as we illustrate in Section 3, but also in the above mentioned algo-
rithms. Currently, these algorithms consider the deletion or inclusion of one
element at a time. However, if we know that multiple elements are to be re-
moved (included), a tool that computes the joint effect of the removal (inclusion)
of multiple elements would be very useful indeed.
The purpose of this work is to extend the theory of single tolerances to so-called
set tolerances where the set upper tolerances are defined for a set of elements
in a given optimal solution, and the set lower tolerances are defined for a set
of elements not in a given optimal solution. The set tolerance is defined as the
maximum sum of values that can be be added to the elements of the set so that
the given optimal solution stays optimal.
The main question in this paper is whether and how set tolerances can be
computed using single tolerances and the values they can attain.
We reach the following results where some of them are only valid for some of
the three types of cost functions:

• The set upper and lower tolerances are well defined, i. e., do not depend
on the corresponding optimal solution.

• The sets overlapping with each feasible solution are exactly the sets with
infinite set upper tolerance.
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• The sets not contained in the union of all feasible solutions are exactly
the sets with infinite set lower tolerance.

• The uniqueness of an optimal solution can be described by the set upper
and lower tolerances.

• The set upper and lower tolerances can be bounded by their corresponding
single tolerance counterparts (i.e., the single tolerances of all elements in
the set). The relations are completely different for the three types of cost
function.

Some of the theorems in this paper were presented in a previous work [21], but
proofs and interpretations of the results were not presented.

This paper is organized as follows. In Section 2, we give the notions of com-
binatorial minimization problem and of the single upper and lower tolerances.
In Section 3, we highlight the shortcomings of single tolerances and motivate
the usage of set tolerances. In Section 4, we present the theory of set upper
tolerances and in Section 5, we proceed with the theory of set lower tolerances.
In Section 6, we provide several basic computational examples and in Section 7,
we give two applications of this theory, namely the Linear Assignment Problem
and the Asymmetric Bottleneck Traveling Salesman Problem. Finally, Section 8
provides the conclusions and some suggestions for future research.

2. Notations and Definitions

In this section, we formally present the notation and key results on combinatorial
minimization problems and single upper and lower tolerances (see [11, 12]). Note
that we add the adjective ‘single’ to distinguish these from set tolerances.

2.1. Combinatorial Minimization Problems

A combinatorial minimization problem P is given by a tuple (E , D, c, fc) where
E is a finite ground set of elements, D ⊆ 2E \ {∅} is the set of feasible solutions,
c : E → R is the cost function, which assigns costs to each single element of E ,
fc : D → R is the objective (cost) function, which depends on the function c
and assigns costs to each feasible solution D.
Then the problem is to find a feasible solution with a cost as small as possible. Of
course, analogous considerations can be made if the costs have to be maximized,
i. e., for combinatorial maximization problems.
S? ⊆ E is called an optimal solution of P if S? is a feasible solution and the cost
fc(S

?) of S? is minimum, i. e., S? ∈ D and fc(S
?) = min {fc(S) | S ∈ D}. We

denote the cost of an optimal solution S? of P by fc(P) and the set of optimal
solutions by D?. There are some particular cost functions which often occur in
practice, namely (cf. Examples 1 and 2):

• The cost function fc : D → R is of type
∑

if for all S ∈ D : fc(S) =∑
e∈S c(e) holds.
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• The cost function fc : D → R is of type
∏

if for all S ∈ D : fc(S) =∏
e∈S c(e) holds and for all e ∈ E : c(e) > 0 holds.

• The cost function fc : D → R is of type MAX if for all S ∈ D : fc(S) =
max {c(e) | e ∈ S} holds. Such a cost function is also called bottleneck
function.

Cost functions of type
∑

,
∏

, MAX are monotonically increasing in a single
element e ∈ E , i. e., the cost of a subset of E does not become cheaper, if the
cost of e increases.
Furthermore, cost functions of type

∑
,
∏

, MAX are continuous when chang-
ing cost values. As in [11, 12], we only consider combinatorial minimization
problems P = (E , D, c, fc) that fulfill the following three conditions:

Condition 1. The set D of feasible solutions of P is independent of the cost
function c.

Condition 2. The cost function fc : D → R is of type
∑

,
∏

, or MAX.

Condition 3. There is at least one optimal solution of P, i. e., D? 6= ∅.

Let a combinatorial minimization problem P = (E , D, c, fc) be given. We obtain
a new combinatorial minimization problem if we add some constant α ∈ R to
the cost of a single element e ∈ E . We denote the new problem by Pcα,e =

(E , D, cα,e, fcα,e), which is formally defined as cα,e(ē) =

{
c(ē), if ē 6= e

c(ē) + α, if ē = e
for all ē ∈ E . Note that fcα,e is of the same type as fc, unless the cost function
is of type

∏
and α ≤ −c(e).

For M ⊆ D, we denote the cost of the best solution included in M by fc(M).
The cost fc(M) for M = ∅ is defined as infinite, i. e., +∞. Obviously, for all
M ⊆ D it holds that fc(P) ≤ fc(M).
Let e ∈ E . We denote the set of feasible solutions of D such that each of
them does not contain e ∈ E by D−(e), i. e., D−(e) = {S ∈ D | e ∈ E \ S}.
Analogously, we denote the set of feasible solutions of D such that each of them
contains e ∈ E by D+(e), i. e., D+(e) = {S ∈ D | e ∈ S}.
Now we generalize our considerations from a single element e ∈ E to a subset
E ⊆ E with E = {e1, e2, . . . , ek} and k ≥ 1 where e1, e2, . . . , ek are in a fixed
order.
Let ~α = (α1, α2, . . . , αk) ∈ Rk. We also obtain a new combinatorial minimiza-
tion problem if for all l ∈ N with 1 ≤ l ≤ k we add αl ∈ R to the cost of el.
We denote the new problem by Pc~α,E = (E , D, c~α,E , fc~α,E ), which is formally

defined as c~α,e(ē) =

{
c(ē), if ē ∈ E \ E

c(ē) + αl, if ē = el
for all ē ∈ E . Note that fc~α,E

is of the same type as fc, unless the cost function is of type
∏

and αl ≤ −c(el)
for at least one l ∈ {1, 2, . . . , k}.
We now define the single tolerances briefly, as these definitions are needed in the
following. The corresponding theory of single tolerances can be found in [11, 12].
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2.2. Single Upper Tolerances

Let P be an instance, S? an optimal solution of P, and e ∈ S?. Then the single
upper tolerance uS?(e) of e with respect to S? is defined as the supremum by
which the cost of e can be increased such that S? remains optimal, provided
that the costs of all other elements ē ∈ E \{e} remain unchanged, i. e., the single
upper tolerance of e is defined as follows:

uS?(e) := sup {α ∈ R+
0 | S? is an optimal solution of Pcα,e}.

Because of the monotonicity and the continuity of cost functions of type
∑

,
∏

,
MAX, it holds that:

uS?(e) = inf {α ∈ R+
0 | S? is not an optimal solution of Pcα,e}. (1)

It holds that uS?(e) is either an element of R+
0 or infinite. Because of the

continuity of the cost function, for all e ∈ S? with 0 ≤ uS?(e) < +∞, it holds
that:

uS?(e) = max {α ∈ R+
0 | S? is an optimal solution of Pcα,e}. (2)

By [11, 12], it holds for any instance P that the single upper tolerance does not
depend on a particular optimal solution of P. Therefore, we refer to the upper
tolerance of e with respect to an optimal solution S? as the upper tolerance of
e with respect to P, uP(e). Let UTEP := {e ∈ E | ∃S? ∈ D? : e ∈ S?} be the
set of elements in E for which the upper tolerance is defined with respect to P.
Obviously, it holds that:

UTEP =
⋃

S?∈D?
S?. (3)

Later we will need the following theorems from [11, 12] about single upper
tolerances.

Theorem 1. Let P be an instance and e ∈ UTEP . Then the following state-
ments are equivalent:

a) e ∈
⋂
S∈D S.

b) uP(e) = +∞.

Theorem 2. Let P be an instance and e ∈ UTEP . Then the following state-
ments hold:

a) uP(e) = fc(D−(e))− fc(P), if the cost function is of type
∑

.

b) uP(e) = fc(D−(e))−fc(P)
fc(P) · c(e), if the cost function is of type

∏
.

c) uP(e) = fc(D−(e))− c(e), if the cost function is of type MAX.
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Theorem 3. Let P be an instance, and let e ∈ UTEP .

a) Let the cost function be of type
∑

or
∏

. Then it holds that:

e ∈
⋂

S?∈D?
S ⇔ uP(e) > 0.

b) Let the cost function be of type MAX. Then it holds that:

e ∈
⋂

S?∈D?
S ⇒ uP(e) > 0.

2.3. Single Lower Tolerances

Let P be an instance, S? an optimal solution of P, and e ∈ E \S?. We seek the
supremum by which the cost of e ∈ E can be decreased such that S? remains
optimal, provided that the costs of all other elements remain unchanged. Note
that if the cost function is of type

∏
, the costs of the elements are larger than 0.

Define δ(e) :=

{
+∞, if the cost function is of type

∑
or MAX

c(e), if the cost function is of type
∏ . δ(e) is

the supremum by which e ∈ E can be decreased such that the cost function
remains of type

∑
,
∏

, or MAX, respectively. The single lower tolerance of e
with respect to S? is defined as follows:

lS?(e) := sup {α ∈ R+
0 | S? is an optimal solution of Pc−α,e}. (4)

Because of the monotonicity and the continuity of the cost function, it holds
that:

lS?(e) = inf {α ∈ R+
0 | S? is not an optimal solution of Pc−α,e}. (5)

For all e ∈ E \ S?, it holds that lS?(e) is either an element of R+
0 or infinite.

More precisely, it holds that: 0 ≤ lS?(e) ≤ δ(e). Because of the continuity of
the cost function, for all e ∈ E \ S? and each 0 ≤ lS?(e) < δ(e), it holds that:

lS?(e) = max {α ∈ R+
0 | S? is an optimal solution of Pc−α,e}.

As by [11, 12], for an instance P the single lower tolerance does not depend
on a particular optimal solution of P, we refer to the lower tolerance of e with
respect to an optimal solution S? as the lower tolerance of e with respect to P,
lP(e). Let LTEP := {e ∈ E | ∃S? ∈ D? : e ∈ E \ S?} be the set of elements in
E for which the lower tolerance is defined with respect to P. Obviously, it holds
that:

LTEP = E \
⋂

S?∈D?
S?. (6)

Later we will need the following theorems from [11, 12] about single lower tol-
erances.
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Theorem 4. Let P be an instance where the cost function is of type
∑

or
∏

.
Furthermore, let e ∈ LTEP . Then the following statements are equivalent:

a) e ∈ E \
⋃
S∈D S.

b) lP(e) = δ(e).

Theorem 5. Let P be an instance and e ∈ LTEP . Then the following state-
ments hold:

a) lP(e) = fc(D+(e))− fc(P), if the cost function is of type
∑

.

b) lP(e) = fc(D+(e))−fc(P)
fc(D+(e)) · c(e), if the cost function is of type

∏
.

c) Let

g(e) :=

{
minS∈D+(e) maxa∈S\{e}{c(a)}, if D+(e) 6= ∅

+∞, if D+(e) = ∅ .

lP(e) =

{
c(e)− fc(P), if g(e) < fc(P)

+∞, otherwise
, if the cost function is of type

MAX.

Theorem 6. Let P be an instance, and let e ∈ LTEP .

a) Let the cost function be of type
∑

or
∏

. Then it holds that:

e ∈ E \
⋃

S?∈D?
S ⇔ lP(e) > 0.

b) Let the cost function be of type MAX. Then it holds that:

e ∈ E \
⋃

S?∈D?
S ⇒ lP(e) > 0.

3. Motivating Examples

A set tolerance measures the largest change in the cost of the elements in a
given set such that the current optimal solution remains optimal; see Eqs. (7),
(13). The size of the change is measured as the sum of the changes in the
individual parameter values. We provide two numerical examples to illustrate
the usage of set upper and lower tolerances in Examples 1 and 2, and we com-
pute the single upper and lower tolerances based on the results presented in
Section 2. In Section 7 we then provide the set upper and lower tolerances and
their interpretation.
In Example 1 we consider the Linear Assignment Problem (LAP); LAPs are
discussed in [3]. Formally, the LAP is defined as follows. Let n ∈ N and
V := {v1, v2, . . . , vn}. Furthermore, let c : V ×V → R be a cost function. Then
the aim is to find a one-to-one function φ : V → V such that

∑n
i=1 c(vi, φ(vi))

is minimized. Clearly the LAP has a cost function of type
∑

.
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Example 1. Assume that we have three workers available for three jobs such
that each worker can perform precisely one job. The cost of assigning a worker
to a job is described by the following LAP instance with n = 3 where the cost
function c : V × V → R is defined as follows:

v1 v2 v3

v1 0 4 5

v2 7 0 6

v3 8 9 0

The purpose is to find a cost minimizing assignment of jobs to the workers.
Each feasible solution contains exactly three elements from V × V . S1 :=
{(v1, v1), (v2, v2), (v3, v3)} is the only optimal solution with cost 0, i.e., this
corresponds to assigning worker 1 to job 1, assigning worker 2 to job 2, and
assigning worker 3 to job 3.
As {(v1, v2), (v2, v1), (v3, v3)} with cost 11 is the best solution not containing
(v1, v1) and also the best solution not containing (v2, v2) and as {(v1, v3), (v2, v2),
(v3, v1)} with cost 13 is the best solution not containing (v3, v3), it holds because
of Theorem 2a) that:

uP((v1, v1)) = uP((v2, v2)) = 11, uP((v3, v3)) = 13.

Similarly, it holds because of Theorem 5a) that:

lP((v1, v2)) = lP((v2, v1)) = 11,

lP((v2, v3)) = lP((v3, v2)) = 15,

lP((v1, v3)) = lP((v3, v1)) = 13.

These upper and lower tolerance values tell us whether the current optimal
assignment remains optimal if one cost parameter changes. This is, for example,
the case if the cost of (v1, v1) increases by at most 11 units. Single upper
tolerance values, however, cannot be used to assess the effect of such multiple
cost changes on the optimality of a solution.
Using set tolerances we consider the impact of the following cost changes in
Example 8 in Section 7:

• Suppose that we can distribute a cost increase α over the assignments
E1 = {(v1, v1), (v3, v3)} ⊆ S1. What is the largest value of α such that S1

can remain optimal?

• Suppose that the costs of the assignments E2 = {(v1, v2), (v3, v2)} ⊆ E \S1

can be reduced. What is the maximum decrease α in these element costs
that still allows S1 to be optimal?

A practical application of this is that the workers may wish to negotiate an in-
crease in their rewards for performing the current jobs 1 and 3 (thereby increas-
ing the current assignment costs), but they wish to keep the current assignments
of workers to jobs. What increase can they achieve?
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Moreover, the LAP is used as a relaxation to the ATSP; see [9, 17, 34]. The sets
of cycles that one typically obtains as a solution to the LAP contains multiple
cycles which are to be combined into a single tour through all locations. Set
tolerances can be used to evaluate the costs of removing multiple arcs from the
different cycles.
In Example 2 we consider a problem with objective MAX, namely the problem
of determining a tour in a network through all locations where the length of the
longest connection is minimized. This is an Asymmetric Bottleneck Traveling
Salesman Problem (ABTSP); Bottleneck TSPs are discussed in [4, 35]. Formally,
the ABTSP is defined as follows. Let G = (V,E) be a directed graph with vertex
set V := {v1, v2, . . . , vn} and arc set E. Furthermore, let c : E → R be a cost
function on the set of arcs. Then the aim is to find a tour (vj1 , vj2 , . . . , vjn , vj1)
such that

max
{
c(vjn , vj1),

n−1
max
i=1
{c(vji , vji+1)}

}
is minimized. Clearly, the ABTSP has a cost function of type MAX.

Example 2. Let n = 4 and the cost function c : E → R be defined as follows:

v1 v2 v3 v4

v1 – 1 2 11

v2 3 – 4 5

v3 12 6 – 7

v4 8 9 10 –

S1 := {(v1, v2, v3, v4, v1)} and S2 := {(v1, v3, v2, v4, v1)} are the optimal solu-
tions with cost 8. For the sake of convenience, we denote a solution by the arcs
that are contained in the tour. It holds because of Theorem 2c) that:

uP((v1, v2)) = 7, uP((v2, v3)) = 4, uP((v3, v4)) = 1, uP((v4, v1)) = 1,

uP((v1, v3)) = 6, uP((v3, v2)) = 2, uP((v2, v4)) = 3.

It holds because of Theorem 5c) that:

lP((v1, v2)) = lP((v1, v3)) = lP((v1, v4)) = +∞,
lP((v2, v1)) = lP((v2, v3)) = lP((v2, v4)) = +∞,
lP((v3, v1)) = lP((v3, v2)) = lP((v3, v4)) = +∞,

lP((v4, v2)) = 1, lP((v4, v3)) = +∞.

Using set tolerances we consider the impact of the following cost changes in
Example 9 in Section 7:

• Suppose that we can distribute a cost increase α over the connections
E1 = {(v1, v3), (v4, v1)} ⊆ S2. What is the largest value of α such that S2

can remain optimal?
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• Suppose that the costs of the connections E2 = {(v1, v4), (v4, v3)} ⊆ E \S1

can be reduced. What is the maximum decrease α in these element costs
that still allows S1 to be optimal?

Here we have the following practical application. Suppose that a government
organization wishes to discourage transporters from using certain connections
in a road network through the use of tariffs or speed impediments. Suppose
further that electric cars will be used frequently in this area. As there are
usually only a few fuel stations for electric cars, those cars have to fuel very
often and for avoiding to fuel for long distances they prefer routes, where the
maximum distance between cities is minimized It holds that if the cost increases
from the incentives are less than α, a driver of an electric car may still use the
current paths, and the tariffs or the speed impediments only lead to cost or
driving time increases.
If we use single upper or lower tolerance values, we can only measure whether
a given solution remains optimal for one single parameter change at a time.
However, as illustrated, there are situations where it is useful to know the largest
joint cost change α on a set of elements such that the current optimal solution
remains optimal.
In the following two sections we introduce set tolerances formally and determine
the values they can attain.

4. Set Upper Tolerances

This section introduces set upper tolerances. First we provide a definition, and
then we derive bounds on the values that set upper tolerances can attain and
finally we consider set upper tolerances in special cases, such as unique optimal
solutions.
Let P be an instance, S? an optimal solution of P, and E = {e1, e2, . . . , ek} ⊆
S?. Extending the single upper tolerance, define the set upper tolerance uS?(E)
of E with respect to S? as the supremum of all those α such that the costs of
all elements e ∈ E are not decreased, the sum of all increases equals α, and
S? remains optimal, provided that the costs of all elements ē ∈ E \ E remain
unchanged, i. e., the set upper tolerance of E is defined as follows:

uS?(E) := sup
{
α ∈ R

∣∣∣ ∃ α1, α2, . . . , αk ≥ 0 with α =

k∑
l=1

αl, (7)

~α = (α1, α2, . . . , αk), S? is an optimal solution of Pc~α,E
}
.

By definition, it holds that:

uS?({e}) = uS?(e). (8)

It holds that uS?(E) is either an element of R+
0 or infinite. Because of the

continuity of the cost function, for all E ⊆ S? with uS?(E) < +∞, it holds
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that:

uS?(E) := max
{
α ∈ R

∣∣∣ ∃ α1, α2, . . . , αk ≥ 0 with α =

k∑
l=1

αl, (9)

~α = (α1, α2, . . . , αk), S? is an optimal solution of Pc~α,E
}
.

Lemma 1. Let P be an instance. Let S1, S2 ∈ D, E = {e1, e2, . . . , ek} ⊆
S1 ∩ S2. Furthermore, let ~α = (α1, α2, . . . , αk) with αl ≥ 0 for l = 1, 2 . . . , k.
Then it holds that:

a) fc(S1) ≤ fc(S2)⇒ fc~α,E (S1) ≤ fc~α,E (S2).

b) fc(S1) = fc(S2)⇒ fc~α,E (S1) = fc~α,E (S2).

Proof:

a) Let fc(S1) ≤ fc(S2). Then it holds for the following cases:

Case 1: The cost function is of type
∑

.

fc~α,E (S1) =

k∑
l=1

(c(el) + αl) +
∑

e∈S1\E

c(e) =

k∑
l=1

αl + fc(S1)

≤
k∑
l=1

αl + fc(S2) =

k∑
l=1

(c(el) + αl) +
∑

e∈S2\E

c(e)

= fc~α,E (S2).

Case 2: The cost function is of type
∏

.

fc~α,E (S1) =

k∏
l=1

(c(el) + αl) ·
∏

e∈S1\E

c(e) =

k∏
l=1

(c(el) + αl) ·
fc(S1)∏k
l=1 c(el)

≤
k∏
l=1

(c(el) + αl) ·
fc(S2)∏k
l=1 c(el)

=

k∏
l=1

(c(el) + αl) ·
∏

e∈S2\E

c(e)

= fc~α,E (S2).

Case 3: The cost function is of type MAX.

Let t ∈ {1, 2, . . . , k} with c(et) + αt = maxkl=1 {c(el) + αl}.
Case 3.1: fc(S1) ≤ fc(S2) < c(et) + αt.

fc~α,E (S1) = c(et) + αt = fc~α,E (S2).

Case 3.2: c(et) + αt ≤ fc(S1) ≤ fc(S2).

fc~α,E (S1) = fc(S1) ≤ fc(S2) = fc~α,E (S2).
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Case 3.3 fc(S1) < c(et) + αt ≤ fc(S2).

fc~α,E (S1) = c(et) + αt ≤ fc(S2) = fc~α,E (S2).

b) This follows directly from a) by switching the roles of S1 and S2. �

In Theorem 7 we show that set upper tolerances are independent of the optimal
solution to which the considered set of edges belongs.

Theorem 7. Let P be an instance. It holds that:

∀S1, S2 ∈ D? ∀E ⊆ S1 ∩ S2 : uS1
(E) = uS2

(E).

Proof: Let E = {e1, e2, . . . , ek} and S1, S2 ∈ D? with E ⊆ S1 ∩ S2. Because
of S1, S2 ∈ D?, it holds that fc(S1) = fc(S2). By Lemma 1b), fc~α,E (S1) =
fc~α,E (S2) for all ~α = (α1, α2, . . . , αk) with αl ≥ 0 for l = 1, 2 . . . , k. By defini-
tion, it follows that uS1

(E) = uS2
(E). �

From Theorem 7 it follows that for any optimal solution S∗ such that E ⊆ S∗,
uS∗(E) has the same value. Thus, we can refer to the set upper tolerance of E
with respect to any optimal solution S? as the set upper tolerance of E with
respect to P, and denote it by uP(E) = uS∗(E). In other words, if any set E
belongs to more than one optimal solution, the upper tolerance of the instance
is achieved on any of the optimal solutions S∗ that contain E.

Let UTSP := {E ⊆ E
∣∣∣ ∃S? ∈ D? : E ⊆ S?} be the set of subsets of E for

which the set upper tolerance is defined with respect to P. By definition, it
holds that:

e ∈ UTEP ⇔ {e} ∈ UTSP , (10)

E ∈ UTSP ⇒ ∀e ∈ E : e ∈ UTEP .

The following theorem shows that if the joint costs α of a set of elements E
increase by more than the upper tolerance value of the set, then no optimal
solution exists that contains all elements of E.

Theorem 8. Let P be an instance, E = {e1, e2, . . . , ek} ∈ UTSP with uP(E) 6=
+∞. Furthermore, let ~α = (α1, α2, . . . , αk), α =

∑k
l=1 αl with αl ≥ 0 for

l = 1, 2, . . . , k and α > uP(E). Then E is not a subset of any optimal solution
of Pc~α,E .

Proof: Assume that E ⊆ S for an optimal solution S of Pc~α,E . Because of
Condition 1, S is a feasible solution of P. As E ∈ UTSP holds, an optimal
solution S? of P with E ⊆ S? exists. It holds that fc(S

?) ≤ fc(S). As E ⊆
S ∩ S?, it follows from Lemma 1a) that:

fc~α,E (S?) ≤ fc~α,E (S). (11)
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As α > uP(E) = uS?(E) and because of Eq. (9), S? is not an optimal solution
of Pc~α,E . Because of Eq. (11), S is also not an optimal solution of Pc~α,E . Thus,
we have a contradiction, and E is not a subset of any optimal solution of Pc~α,E .

�

One challenge is the computation of set upper tolerances, i.e., the largest value
of α for which the current solution remains optimal. This computation is
quite complicated as it requires the implicit consideration of all combinations of
(α1, . . . , αk) such that α1 + . . . + αk = α. However, Theorem 9 shows that we
can bound the set upper tolerance values of any set E using the single upper
tolerance values of the elements in the set.

Theorem 9. Let P be an instance and E = {e1, e2, . . . , ek} ∈ UTSP . Then the
following inequalities hold:

a) maxkl=1 {uP(el)} ≤ uP(E).

b) If the cost function is of type
∑

or
∏

, uP(E) ≤
∑k
l=1 uP(el).

c) If the cost function is of type MAX,
∑k
l=1 uP(el) ≤ uP(E).

Proof: Let S? be an optimal solution of P with E ⊆ S?.

a) Trivially, the inequality is true if uP(E) = +∞. In the following let uP(E) 6=
+∞.

Assume that maxkl=1 {uP(el)} > uP(E). Let t ∈ {1, 2, . . . , k} with uP(et) =
maxkl=1 {uP(el)}. By Eq. (9), for all α ∈ R with uP(E) < α < uP(et) with

α =
∑k
l=1 αl, ~α = (α1, α2, . . . , αk) and αl ≥ 0 for l = 1, 2, . . . , k, S? is not

an optimal solution of Pc~α,E . In particular, this holds for the following def-

inition where l = 1, 2, . . . , k : αl =

{
(uP(E) + uP(et))/2, if l = t

0, otherwise
.

With (uP(E) + uP(et))/2 < uP(et) we receive a contradiction to Eq. (1).

b) Trivially, the inequality is true if
∑k
l=1 uP(el) = +∞. In the following let∑k

l=1 uP(el) 6= +∞.

Assume that uP(E) >
∑k
l=1 uP(el). Choose α ∈ R with

∑k
l=1 uP(el) <

α ≤ uP(E), α =
∑k
l=1 αl, ~α = (α1, α2, . . . , αk) with αl ≥ 0 for l =

1, 2, . . . , k so that S? is an optimal solution of Pc~α,E . Then a t ∈ {1, 2, . . . , k}
exists with αt > uP(et). By Eq. (2), a feasible solution S exists with
fcαt,et (S) < fcαt,et (S

?). We distinguish between the following cases:

Case 1: The cost function is of type
∑

.

fc~α,E (S) = fcαt,et (S) +

k∑
l=1,l 6=t,el∈S

αl

< fcαt,et (S
?) +

k∑
l=1,l 6=t

αl

= fc~α,E (S?).
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Case 2: The cost function is of type
∏

.

fc~α,E (S) = fcαt,et (S) ·
k∏

l=1,l 6=t,el∈S

c(el) + αl
c(el)

< fcαt,et (S
?) ·

k∏
l=1,l 6=t

c(el) + αl
c(el)

= fc~α,E (S?).

Thus, S? is not an optimal solution of Pc~α,E , which is a contradiction.

c) Trivially, the inequality is true if uP(E) = +∞. If
∑k
l=1 uP(el) = +∞,

then it also holds that maxkl=1 {uP(el)} = +∞. It follows from a) that
uP(E) = +∞, and the inequality is also true. In the following let both

terms uP(E) and
∑k
l=1 uP(el) be not equal +∞.

Let ~α = (α1, α2, . . . , αk) and αl = uP(el) for l = 1, 2, . . . , k. A t ∈
{1, 2, . . . , k} exists with

fc~α,E (S?) = c(et) + αt. (12)

Then it holds for each feasible solution S that:

fc~α,E (S?) = c(et) + αt, because of Eq. (12)

≤ fcαt,et (S
?)

≤ fcαt,et (S), because of αt = uP(et)

≤ fc~α,E (S).

Then,
∑k
l=1 uP(el) ≤ uP(E). �

Examples with strict inequality in Theorem 9c) are provided later (see Exam-
ple 7 on Page 26 and Example 9 on Page 29).
As a consequence of Theorem 7, it holds that uS∗(E) = uP(E) for each E ⊆ S∗.
Therefore, it is not necessary to know all optimal solutions to use Theorem 9.
It suffices to have an optimal solution that contains E. It is easy to see that
this also holds for the subsequent theorems.
The following two theorems are generalizations of Theorem 1 and Theorem 3,
respectively, and show the values of the set upper tolerances if elements in
the considered set belong to all feasible solutions and all optimal solutions,
respectively.

Theorem 10. Let P be an instance where the cost function is of type
∑

or
∏

.
Let E = {e1, e2, . . . , ek} ∈ UTSP . Then the following statements are equivalent:

a) E ∩
⋂
S∈D S 6= ∅.

b) uP(E) = +∞.

c) maxkl=1 {uP(el)} = +∞.
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Proof:

“ a)⇔ c)” The following statements are equivalent:

E ∩
⋂
S∈D

S 6= ∅,

∃ l ∈ {1, 2, . . . , k} : el ∈
⋂
S∈D

S,

∃ l ∈ {1, 2, . . . , k} : uP(el) = +∞, because of Theorem 1

k
max
l=1
{uP(el)} = +∞.

“ b)⇒ c)” This follows from Theorem 9b), because if
∑k
l=1 uP(el) = +∞,

then it also holds that maxkl=1 {uP(el)} = +∞.

“ c)⇒ b)” This follows from Theorem 9a). �

In practice, one would use part c) of Theorem 10, maxkl=1 {uP(el)} = +∞, to
show part a) E ∩

⋂
S∈D S 6= ∅, i.e., one or more elements in E belong to all

feasible solutions.

Remark 1. For a cost function be of type MAX, Theorem 10 does not hold.

Proof: Consider the following example:

Example 3.

• E = {x, y, z} with c(x) = 3, c(y) = 7, c(z) = 12,

• E = {x, y}, e1 = x, e2 = y,

• D = { {x, y}, {x, z}, {y, z} },

• the cost function is of type MAX.

{x, y} is the optimal solution with cost 7, and two further feasible solutions
exist, namely {x, z} and {y, z} with cost 12.
Obviously, E ∩

⋂
S∈D S = ∅, i.e., a) does not hold.

Choose β ∈ R with β ≥ 5 arbitrary. Increase the cost of e1 by α1 = β + 4 and
the cost of e2 by α2 = β, and let ~α = (α1, α2). Then all three feasible solutions
have the same cost β + 7 and are optimal with respect to Pc~α,E . As β ≥ 5 can
be chosen arbitrarily large, it follows that uP(E) = +∞, i.e., b) holds.
By Theorem 2(c), it holds that uP(e1) = 9, uP(e2) = 5. Thus,

max {uP(e1), uP(e2)} = 9 < +∞.

Thus, c) does not hold. �

15



Theorem 11. Let P be an instance and E ∈ UTSP . Then,

E ⊆
⋂

S?∈D?
S? ⇒ uP(E) > 0.

Proof: Let E ⊆
⋂
S?∈D? S

?. It follows that el ∈
⋂
S?∈D? S

? for l = 1, 2, . . . , k.

By Theorem 3, it follows that maxkl=1{uP(el)} > 0, and by Theorem 9a) that
uP(E) > 0. �

Finally, we present a criterion for the uniqueness of an optimal solution based
on set upper tolerances.

Theorem 12. Let P be an instance where the cost function is of type
∑

or
∏

.
Then the following statements are equivalent:

a) Only one optimal solution of P exists.

b) uP(E) > 0 for all E ∈ UTSP .

Proof: By Eq. (3), the condition that uP(e) > 0 for all e ∈ UTEP is equivalent
to the condition that uP(e) > 0 for all e ∈

⋃
S?∈D? S

?. By Theorem 3a), this is
equivalent to

⋃
S?∈D? S

? ⊆
⋂
S?∈D? S

? and equivalent to |D?| = 1.
Thus, a) is equivalent to

c) uP(e) > 0 for all e ∈ UTEP .

Therefore, it is sufficient to show the equivalence of b) and c).

“ b)⇒ c)” Let e ∈ UTEP . By Eqs. (8), (10), it holds that E := {e} ∈ UTSP
and uP(E) = uP(e). By b), uP(e) = uP(E) > 0.

“ c)⇒ b)” This follows from Theorem 9a). �

5. Set Lower Tolerances

This section is structured in the same way as Section 5. It introduces set lower
tolerances, provides a definition of them, and derives bounds on the values
that set lower tolerances can attain, and one exact value. Finally, we consider
set lower tolerances in special cases, such as the presence of unique optimal
solutions.
Let P be an instance, S? an optimal solution of P, and E = {e1, e2, . . . , ek} ⊆
E\S?. Extending the single lower tolerance, define the set lower tolerance lS?(E)
of E with respect to S? as the supremum of all those α such that the costs of
all elements e ∈ E are not increased, the cost function remains of type

∑
,
∏

,
or MAX, the sum of all decreases equals α, and S? remains optimal, provided
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that the costs of all elements ē ∈ E \ E remain unchanged, i. e., the set lower
tolerance of E is defined as follows:

lS?(E) := sup
{
α ∈ R

∣∣∣ ∃ α1, α2, . . . , αk with α =

k∑
l=1

αl,

~α = (α1, α2, . . . , αk), 0 ≤ α1 < δ(e1), 0 ≤ α2 < δ(e2), (13)

. . . , 0 ≤ αk < δ(ek), S? is an optimal solution of Pc−~α,E
}
.

By definition, it holds that:

lS?({e}) = lS?(e). (14)

It holds that lS?(E) is either an element of R+
0 or infinite. More precisely, it

holds for all E ⊆ E \ S? that:

0 ≤ lS?(E) ≤
k∑
l=1

δ(el),

For a cost function of type
∑

or MAX, it holds for all E ⊆ E \S? with lS?(E) <
+∞ that:

lS?(E) := max
{
α ∈ R

∣∣∣ ∃ α1, α2, . . . , αk with α =

k∑
l=1

αl,

~α = (α1, α2, . . . , αk), 0 ≤ α1 < δ(e1), 0 ≤ α2 < δ(e2), (15)

. . . , 0 ≤ αk < δ(ek), S? is an optimal solution of Pc−~α,E
}
.

Similar to Theorem 7 it holds that the set lower tolerance does not depend
on the particular optimal solution of P: for all optimal solutions S∗ such that
E ⊆ E \ S∗, it holds that the value of the set lower tolerance is the same. This
is shown in the following theorem.

Theorem 13. Let P be an instance. It holds that:

∀S1, S2 ∈ D? ∀E ⊆ E \ (S1 ∪ S2) : lS1
(E) = lS2

(E).

Proof: Let E = {e1, e2, . . . , ek} and S1, S2 ∈ D? with E ⊆ E\(S1∪S2). Because
of S1, S2 ∈ D?, it holds that fc(S1) = fc(S2). It follows that fc−~α,E (S1) =
fc(S1) = fc(S2) = fc−~α,E (S2) for all ~α = (α1, α2, . . . , αk) with 0 ≤ αl < δ(el)
for l = 1, 2, . . . , k. By definition, it follows that lS1

(E) = lS2
(E). �

We refer to the set lower tolerance of E with respect to an optimal solution S?

as the set lower tolerance of E with respect to P, and denote it by lP(E). Let

LTSP := {E ⊆ E
∣∣∣ ∃S? ∈ D? : E ⊆ E \S?} be the set of subsets of E for which

the set lower tolerance is defined with respect to P. By definition, it holds that:

e ∈ LTEP ⇔ {e} ∈ LTSP , (16)

E ∈ LTSP ⇒ ∀e ∈ E : e ∈ LTEP . (17)
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For lower tolerances we have to distinguish between cost functions of type
∑

or
MAX in Theorem 14 on the one hand and of type

∏
in Theorem 15 on the

other hand. For a cost function of type
∏

we should take into account that a
cost decrease of any e ∈ LTEP of more than c(e) units changes the sign of the
objective values of solutions that include e and a cost decrease of precisely c(e)
makes the costs of all these solutions 0. It is not unreasonable to exclude such
cost decreases from our analysis of the cost function

∏
. For cost functions of

type
∑

or MAX negative cost coefficients are inconsequential.

Theorem 14. Let P be an instance where the cost function is of type
∑

or
MAX. Furthermore, let E ∈ LTSP . Then it holds that:

E ⊆ E \
⋃
S∈D

S ⇒ lP(E) = +∞.

Proof: Let E = {e1, e2, . . . , ek} and E ⊆ E \
⋃
S∈D S. Decreasing the cost of

el by αl ≥ 0 for l = 1, 2, . . . , k does not change the cost of any feasible solution,
and optimal solutions remain optimal. Therefore, lP(E) = +∞. �

Theorem 15. Let P be an instance where the cost function is of type
∏

. Fur-
thermore, let E = {e1, e2, . . . , ek} ∈ LTSP . Then it holds that:

E ⊆ E \
⋃
S∈D

S ⇔ lP(E) =

k∑
l=1

c(el)

Proof:

“⇒” Let E ⊆ E \
⋃
S∈D S. Set αl = c(el)− ε for l = 1, 2, . . . , k where ε ∈ R+

is chosen arbitrarily small, and α =
∑k
l=1 αl. This vector leads to the

supremum of all those α with the condition that the instance is still of
type

∏
after the decreases. Furthermore, as E ⊆ E \

⋃
S∈D S, the cost of

any feasible solution is not changed, and optimal solutions remain optimal.
Therefore, lP(E) =

∑k
l=1 c(el).

“⇐” Let lP(E) =
∑k
l=1 c(el). Assume that E * E \

⋃
S∈D S. Then a t ∈

{1, 2, . . . , k} and S ∈ D exist with et ∈ S. Let S? be an optimal solution
of P with E ⊆ E \ S?. Choose ε ∈ R+ with

ε <
fc(S

?) · c(et)
fc(S)

. (18)

By Eq. (13), α ∈ R+ and ~α = (α1, α2, . . . , αk) exist with α =
∑k
l=1 αl,

α >
∑k
l=1 c(el) − ε and 0 ≤ αl < c(el) for l = 1, 2, . . . , k such that S? is

an optimal solution of Pc−~α,E . It follows that:

αt > c(et)− ε. (19)
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Hence,

fc−~α,E (S?) = fc(S
?)

>
fc(S) · ε
c(et)

, because of Eq. (18)

>
fc(S) · (c(et)− αt)

c(et)
, because of Eq. (19)

≥ fc−~α,E (S).

Thus, S? is not an optimal solution of Pc−~α,E , and we have a contradiction.
Therefore, E ⊆ E \

⋃
S∈D S. �

Similarly to Theorem 8, Theorem 16 shows that no optimal solution exists that
does not contain any element of E, if the joint cost decrease α of all elements
in a set exceeds the set lower tolerance.

Theorem 16. Let P be an instance, E = {e1, e2, . . . , ek} ∈ LTSP with lP(E) 6=
+∞. Furthermore, let ~α = (α1, α2, . . . , αk), α =

∑k
l=1 αl with 0 ≤ αl < δ(el)

for l = 1, 2, . . . , k and α > lP(E). Then E overlaps with each optimal solution
of Pc−~α,E .

Proof: Assume that E ⊆ E \ S for an optimal solution S of Pc−~α,E . Because
of Condition 1, S is a feasible solution of P. As E ∈ LTSP holds, an optimal
solution S? of P with E ⊆ E \ S? exists. It holds that fc(S

?) ≤ fc(S). As
E ⊆ E \ (S ∪ S?), it follows that:

fc−~α,E (S?) = fc(S
?) ≤ fc(S) = fc−~α,E (S). (20)

As α > lP(E) = lS?(E) and because of Eq. (13), S? is not an optimal solution
of Pc−~α,E . Because of Eq. (20), S is also not an optimal solution of Pc−~α,E .
Thus, we have a contradiction, and E overlaps with each optimal solution of
Pc−~α,E . �

In Theorem 17 we provide bounds to the values of the set lower tolerances.
Interestingly, if the cost function is of type MAX, we can express the set lower
tolerance value as the sum of the individual single lower tolerance values of the
elements.

Theorem 17. Let P be an instance and E = {e1, e2, . . . , ek} ∈ LTSP . Then
the following inequalities hold:

a) maxkl=1 {lP(el)} ≤ lP(E) ≤
∑k
l=1 lP(el).

b) If the cost function is of type MAX, lP(E) =
∑k
l=1 lP(el).
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Proof: Let S? be an optimal solution of P with E ⊆ E \ S?.

a) We show the claimed inequalities.

• maxk
l=1 {lP(el)} ≤ lP(E).

Trivially, the inequality is true if lP(E) = +∞. In the following let
lP(E) 6= +∞.

Assume that maxkl=1 {lP(el)} > lP(E). Let t ∈ {1, 2, . . . , k} with
lP(et) = maxkl=1 {lP(el)}. By Eq. (13), for all α ∈ R with lP(E) <

α, α =
∑k
l=1 αl, ~α = (α1, α2, . . . , αk) and 0 ≤ αl < δ(el) for

l = 1, 2, . . . , k, S? is not an optimal solution of Pc−~α,E . In par-
ticular, this holds for the following definition where l = 1, 2, . . . , k :

αl =

{
(lP(E) + lP(et))/2, if l = t

0, otherwise
. With (lP(E)+ lP(et))/2 <

lP(et) we receive a contradiction to Eq. (5).

• lP(E) ≤
∑k

l=1 lP(el).

Trivially, the inequality is true if
∑k
l=1 lP(el) = +∞. In the following

let
∑k
l=1 lP(el) 6= +∞.

Assume that lP(E) >
∑k
l=1 lP(el). Choose α ∈ R with

∑k
l=1 lP(el) <

α ≤ lP(E), α =
∑k
l=1 αl, ~α = (α1, α2, . . . , αk) and 0 ≤ αl < δ(el)

for l = 1, 2, . . . , k so that S? is an optimal solution of Pc−~α,E . Then
a t ∈ {1, 2, . . . , k} exists with αt > lP(et). By Eq. (4), a feasible
solution S exists with fc−αt,et (S) < fc−αt,et (S

?). It follows that
fc−~α,E (S) ≤ fc−αt,et (S) < fc−αt,et (S

?) = fc−~α,E (S?). Thus, S? is
not an optimal solution of Pc−~α,E , which is a contradiction.

b) By a), it remains to be shown that
∑k
l=1 lP(el) ≤ lP(E).

Trivially, the inequality is true if lP(E) = +∞. If
∑k
l=1 lP(el) = +∞,

then it also holds that maxkl=1 {lP(el)} = +∞. From a) it follows that
lP(E) = +∞, and the inequality is also true. In the following let both

terms lP(E) and
∑k
l=1 lP(el) be not equal +∞.

Let α ≥ 0 with α =
∑k
l=1 αl, ~α = (α1, α2, . . . , αk) and αl = lP(el) for

l = 1, 2, . . . , k. By Theorem 5c), lP(el) = c(el) − fc(P) 6= +∞. Let S be
an arbitrary feasible solution of Pc−~α,E .

Case 1: E ⊆ E \ S.

Then, fc−~α,E (S?) = fc(S
?) ≤ fc(S) = fc−~α,E (S).
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Case 2: E * E \ S.

Then an l ∈ {1, 2, . . . , k} exists with el ∈ S and it holds that:

fc−~α,E (S?) = fc(S
?)

= fc(P)

= c(el)− (c(el)− fc(P))

= c(el)− αl
≤ fc−~α,E (S).

In both cases, S? is an optimal solution of Pc−~α,E , and α =
∑k
l=1 lP(el)

≤ lP(E) because of Eq. (15). �

The following two theorems are generalizations of Theorem 4 and Theorem 6,
respectively, and show the values of the set lower tolerances if elements in the
considered set belong to no feasible solutions or to no optimal solutions, respec-
tively.

Theorem 18. Let P be an instance where the cost function is of type
∑

.
Furthermore, let E = {e1, e2, . . . , ek} ∈ LTSP . Then the following statements
are equivalent:

a) E *
⋃
S∈D S.

b) lP(E) = +∞.

c) maxkl=1 {lP(el)} = +∞.

Proof:

“ a)⇔ c)” The following statements are equivalent:

E *
⋃
S∈D

S,

∃ l ∈ {1, 2, . . . , k} : el ∈ E \
⋃
S∈D

S,

∃ l ∈ {1, 2, . . . , k} : lP(el) = +∞, because of Theorem 4 and Eq. (17)

k
max
l=1
{lP(el)} = +∞.

“ b)⇒ c)” This follows from the second inequality of Theorem 17a), because

if
∑k
l=1 lP(el) = +∞, then it also holds that maxkl=1 {lP(el)} = +∞.

“ c)⇒ b)” This follows from the first inequality of Theorem 17a). �
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In practice, one would use part c) of Theorem 18 to show part a), i.e., to show
that E contains elements that do not belong to any feasible solution.

Clearly, Theorem 18 cannot hold for a cost function of type
∏

, but it does also
not hold for a cost function be of type MAX, as can be seen in the following
remark.

Remark 2. For a cost function be of type MAX, Theorem 18 does not hold.

Proof: Consider the following example:

Example 4.

• E = {w, x, y, z} with c(w) = c(x) = c(y) = c(z) = 1,

• E = {y, z}, e1 = y, e2 = z,

• D = { {w, x}, {w, y}, {x, z} },

• the cost function is of type MAX.

The three feasible solutions {w, x}, {w, y} and {x, z} are optimal with cost 1.
Obviously, E ⊆

⋃
S∈D S = E , i.e., a) does not hold.

By Theorem 5(c), it holds that lP(e1) = +∞, lP(e2) = +∞. Thus, maxkl=1 {lP(el)} =
+∞, and c) holds.
By Theorem (17)(a), it follows that lP(E) = +∞, i.e., b) holds.

Theorem 19. Let P be an instance and E ∈ LTSP . Then,

E ⊆ E \
⋃

S?∈D?
S? ⇒ lP(E) > 0.

Proof: Let E ⊆ E \
⋃
S?∈D? S

?. It follows that el ∈ E \
⋃
S?∈D? S

? for

l = 1, 2, . . . , k. By Theorem 6, it follows that maxkl=1{lP(el)} > 0, and by
Theorem 17a) that lP(E) > 0. �

Finally, we present a criterion for the uniqueness of an optimal solution based
on set lower tolerances.

Theorem 20. Let P be an instance where the cost function is of type
∑

or
∏

.
Then the following statements are equivalent:

a) Only one optimal solution of P exists.

b) lP(E) > 0 for all E ∈ LTSP .

Proof: By Eq. (6), the condition that lP(e) > 0 for all e ∈ LTEP is equivalent
to the condition that lP(e) > 0 for all e ∈ E \

⋂
S?∈D? S

?. By Theorem 6a), this
is equivalent to E \

⋂
S?∈D? S

? ⊆ E \
⋃
S?∈D? S

? and equivalent to |D?| = 1.
Thus, a) is equivalent to
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c) lP(e) > 0 for all e ∈ LTEP .

Therefore, it is sufficient to show the equivalence of b) and c).

“ b)⇒ c)” Let e ∈ LTEP . By Eqs. (14), (16), it holds that E := {e} ∈ LTSP
and lP(E) = lP(e). By b), lP(e) = lP(E) > 0.

“ c)⇒ b)” This follows from the first inequality of Theorem 17a). �

6. Basic Computational Examples

In this section, we illustrate the main theoretical results in Sections 4 and 5,
namely the computation of (bounds to) the values of set upper and lower tol-
erances, for the three types of cost functions by simple examples of each of
them.

Example 5. (Cost function of type
∑

)

• E = {v, w, x, y, z} with c(v) = 2, c(w) = 4, c(x) = 8, c(y) = 7, c(z) = 9,

• D = { {v, w}, {v, x}, {y, z} }.

S1 := {v, w} is the only optimal solution with cost 6, and two further feasible
solutions exist, namely S2 := {v, x} with cost 10, and S3 := {y, z} with cost 16.
Because of Theorem 2a), it holds that:

uP(v) = 10, uP(w) = 4,

and because of Theorem 5a), it holds that:

lP(x) = 4, lP(y) = 10, lP(z) = 10.

• Let E = {v, w} ⊆ S1, e1 = v, e2 = w.

It follows from Eq. (7) that:

uP(E) = sup
α1,α2∈R+

0

{α1 + α2}

with the constraint

fc(α1,α2),E
(S1) ≤ min {fc(α1,α2),E

(S2), fc(α1,α2),E
(S3)},

which is equivalent to

uP(E) = sup
α1,α2∈R+

0

{α1 + α2}
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with the constraints

4 + α2 ≤ 8,

6 + α1 + α2 ≤ 16.

It follows that α1 = 6 and α2 = 4, and then (cf. Theorem 9a),b)):

max{uP(v), uP(w)} = uP(E) = 10 < uP(v) + uP(w) = 14.

Thus, this is an example where the lower bound of Theorem 9a) is attained.

• Let E = {y, z} ⊆ E \ S1, e1 = y, e2 = z.

It follows from Eq. (13) that:

lP(E) = sup
α1,α2∈R+

0

{α1 + α2}

with the constraint

fc(α1,α2),E
(S1) ≤ min {fc(α1,α2),E

(S2), fc(α1,α2),E
(S3)},

which is equivalent to

lP(E) = sup
α1,α2∈R+

0

{α1 + α2}

with the constraint

16− α1 − α2 ≥ 6.

It follows that α1 + α2 = 10, and then (cf. Theorem 17a)):

max {lP(y), lP(z)} = lP(E) = 10 < lP(y) + lP(z) = 20.

Thus, this is an example where the lower bound of Theorem 17a) is at-
tained.

Analogously, it can be shown for E = {x, y}:

max {lP(x), lP(y)} = 10 < lP(E) = lP(x) + lP(y) = 14.

Thus, this is an example where the upper bound of Theorem 17a) is at-
tained.

For E = {x, z} it holds that:

max {lP(x), lP(z)} = 10 < lP(E) = lP(x) + lP(z) = 14.

Thus, this is another example where the upper bound of Theorem 17a) is
attained.
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For E = {x, y, z} it holds that:

max {lP(x), lP(y), lP(z)} = 10 < lP(E) = 14

< lP(x) + lP(y) + lP(y) = 24.

Thus, this is an example where neither the lower bound nor the upper
bound of Theorem 17a) is attained.

Example 6. (Cost function of type
∏

)

• E = {w, x, y, z} with c(w) = 2, c(x) = 4, c(y) = 1, c(z) = 36,

• D = { {w, x}, {y, z} }.

S1 := {w, x} is the only optimal solution with cost 8, and S2 := {y, z} the
second feasible solution with cost 36. Because of Theorem 2b), it holds that:

uP(w) = 7, uP(x) = 14,

and because of Theorem 5b), it holds that:

lP(y) = 7/9, lP(z) = 28.

• Let E = {w, x} ⊆ S1, e1 = w, e2 = x.

From Eq. (7), it follows that:

uP(E) = sup
α1,α2∈R+

0

{α1 + α2}

with the constraint that S1 is an optimal solution of Pc(α1,α2),E
.

This is equivalent to

uP(E) = sup
α1,α2∈R+

0

{α1 + α2}

with the constraint

fc(α1,α2),E
(S1) ≤ fc(α1,α2),E

(S2),

and equivalent to

uP(E) = sup
α1,α2∈R+

0

{α1 + α2}

with the constraint

(2 + α1) · (4 + α2) ≤ 36.

As a sum of two positive numbers with fixed product is maximized, if and
only if the difference of both numbers is maximized, it follows that α1 = 0,
α2 = 14, and then (cf. Theorem 9a),b)):

max {uP(w), uP(x)} = uP(E) = 14 < uP(w) + uP(x) = 21.

Thus, this is an example where the lower bound of Theorem 9a) is attained.
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• Let E = {y, z} ⊆ E \ S1, e1 = y, e2 = z.

It follows from Eq. (13) that:

lP(E) = sup
α1≤1, α2≤36

{α1 + α2}

with the constraint

fc(α1,α2),E
(S1) ≤ fc(α1,α2),E

(S2)

which is equivalent to

lP(E) = sup
α1≤1, α2≤36

{α1 + α2}

with the constraint

8 ≤ (1− α1) · (36− α2).

The largest value of α = α1+α2 such that this inequality holds is achieved
for α1 = 0, α2 = 28, and then (cf. Theorem 17a)):

max {lP(y), lP(z)} = lP(E) = 28 < lP(w) + lP(x) = 28
7

9
.

Thus, this is an example where the lower bound of Theorem 17a) is at-
tained.

Example 7. (Cost function of type MAX)

• E = {w, x, y, z} with c(w) = 3, c(x) = 5, c(y) = 4, c(z) = 8,

• D = { {w, x}, {x, y}, {w, z} }.

S1 := {w, x} and S2 := {x, y} are optimal solutions with cost 5. The third
feasible solution S3 := {w, z} has cost 8. Because of Theorem 2c), it holds that:

uP(w) = 2, uP(x) = 3, uP(y) = 1,

and because of Theorem 5c), it holds that:

lP(w) = +∞, lP(y) = +∞, lP(z) = 3.

• Let E = {w, x} ⊆ S1, e1 = w, e2 = x.

It follows from Eq. (7) that:

uP(E) = sup
α1,α2∈R+

0

{α1 + α2}

with the constraint

fc(α1,α2),E
(S1) ≤ min {fc(α1,α2),E

(S2), fc(α1,α2),E
(S3)},
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which is equivalent to

uP(E) = sup
α1,α2∈R+

0

{α1 + α2}

with the constraints

3 + α1 ≤ 5 + α2,

5 + α2 ≤ max{3 + α1, 8}.

It follows that α1 = d+ 2, α2 = d where d can be chosen arbitrarily large.
Then it follows (cf. Theorem 9a),c)):

max{uP(w), uP(x)} = 3 < uP(w) + uP(x) = 5 < uP(E) = ∞.

Thus, this is an example where the lower bound of Theorem 9c) is not
attained.

• Let E = {x, y} ⊆ S2, e1 = x, e2 = y.

It follows from Eq. (7) that:

uP(E) = sup
α1,α2∈R+

0

{α1 + α2}

with the constraint

fc(α1,α2),E
(S2) ≤ min {fc(α1,α2),E

(S1), fc(α1,α2),E
(S3)},

which is equivalent to

uP(E) = sup
α1,α2∈R+

0

{α1 + α2}

with the constraints

4 + α2 ≤ 5 + α1,

5 + α1 ≤ 8.

It follows that α1 = 3, α2 = 4, and then (cf. Theorem 9a),c)):

max{uP(x), uP(y)} = 3 < uP(x) + uP(y) = 4 < uP(E) = 7.

Thus, this is another example where the lower bound of Theorem 9c) is
not attained.

• Let E = {y, z} ⊆ E \ S1, e1 = y, e2 = z.

It holds (cf. Theorem 17b)):

max {lP(y), lP(z)} = lP(E) = lP(y) + lP(z) = +∞.

Thus, this is an example for the exact formula of Theorem 17b).
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7. Computation and Discussion of Set Tolerances

In Section 3 we introduced numerical examples of two combinatorial minimiza-
tion problems. We also considered joint cost changes in multiple elements. In
this section we use set tolerances to assess the impact of these cost changes on
the optimal solutions. Moreover, we discuss the limitations of set tolerances
based on these examples.

Example 8. (Continuation of Example 1)
In Example 1 we solved a Linear Assignment Problem (LAP) instance with 3
workers and 3 jobs.
The question is which cost increase α in the job-to-worker assignments (the
elements in our problem) can be accommodated such that S1 remains optimal.
We consider the cost increases of the elements in the set E1 = {(v1, v1), (v3, v3)}
and cost decreases of the elements in E2 = {(v1, v2), (v3, v2)}.

• Let E1 = {(v1, v1), (v3, v3)} ⊆ S1, e1 = (v1, v1), e2 = (v3, v3).

According to Theorem 9a),b) and Example 1 it holds that:

max{uP((v1, v1)), uP((v3, v3))} = 13 ≤ uP(E1)

≤ uP((v1, v1)) + uP((v3, v3)) = 24.

Thus, for a value of α ≤ 13 we know that there exist α1, α2, α1 + α2 = α
such that S1 remains optimal and for α > 24 we know from Theorem 8
that no such α1, α2 exist.

In fact, it is easy to see that increasing the cost of e1 = (v1, v1) by α1 = 6
and increasing the cost of e2 = (v3, v3) by α2 = 7 does not change the
optimality of S1. If we increase the cost any further than α = 13, we
obtain that the solution {(v1, v3), (v2, v2), (v3, v1)} with cost 13 becomes
the optimal solution, as it does not contain (v1, v1) and it does not contain
(v3, v3).

It follows that:

uP((v1, v1), (v3, v3)) = 13.

We have (cf. Example 1 and Theorem 9a),b)):

max {uP((v1, v1)), uP((v3, v3))} = uP(E1) = 13

In this case the set upper tolerance equals the lower bound. An interpreta-
tion of its value is that workers 1 and 3 could increase their joint rewards
by 13 units without changing the optimal assignment. One corresponding
distribution is an increase α1 = 6 for the first worker and α2 = 7 for the
second one.
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• Let E2 = {(v1, v2), (v3, v2)} ⊆ E \ S1, e1 = (v1, v2), e2 = (v3, v2).

According to Theorem 17a),b) it holds that:

max{lP((v1, v2)), lP((v3, v2))} = 15 ≤ lP(E2)

≤ lP((v1, v2)) + lP((v3, v2)) = 26.

As {(v1, v2), (v2, v1), (v3, v3)} with cost 11 is the best solution containing
(v1, v2), as {(v1, v1), (v2, v3), (v3, v2)} with cost 15 is the best solution con-
taining (v3, v2) and as no feasible solution exists containing both (v1, v2)
and (v3, v2), it follows that:

lP((v1, v2), (v3, v2)) = 11 + 15 = 26 = lP((v1, v2)) + lP((v3, v2)).

In this case the upper bound in Theorem 17a) is attained.

The interpretation could be that if we can reduce the costs of the assign-
ments of workers 1 and 3 to job 2 by 26 units in total, there exists a
distribution α = α1 + α2, namely α1 = 11, α2 = 15 such that S1 remains
an optimal solution, which means that such a cost reduction has no impact
on the total costs of performing the three jobs.

Similarly we compute the set upper and lower tolerances of the ABTSP instance
from Example 2, which has a bottleneck cost function (MAX).

Example 9. (Continuation of Example 2)
We consider the cost increases of the elements in the sets E1 = {(v1, v3), (v4, v1)}
and cost decreases of the elements in E2 = {(v1, v4), (v4, v3)}.

• Let E1 = {(v1, v3), (v4, v1)} ⊆ S2, e1 = (v1, v3), e2 = (v4, v1).

Theorem 9c)) provides a lower bound to the set upper tolerance of E1 in
case of a bottleneck cost function, namely (cf. Example 2):

uP((v1, v3)) + uP((v4, v1)) = 7 ≤ uP(E1).

We now know that a joint cost increase in (v1, v3) and (v4, v1) of 7 units
can be distributed over these elements while keeping S2 optimal.

In fact, the true value of uP(E1) is strictly larger in this example. As
{(v1, v4, v3, v2, v1)} with cost 11 is the best solution that does not contain
(v1, v3) and (v4, v1), it follows that:

uP(E1) = (11− 2) + (11− 8) = 12.

• Let E2 = {(v1, v4), (v4, v3)} ⊆ E \ S1, e1 = (v1, v4), e2 = (v4, v3).

We have (cf. Theorem 17b) and Example 2):

lP((E2)) = lP((v1, v4)) + lP((v4, v3)) = +∞.

29



The examples highlight two challenges concerning set tolerances. The first chal-
lenge is to establish exact computations of the set upper and lower tolerance
values. One way to do this is by showing that the bounds in Theorem 9 and
17 are sharp for specific problems. The second challenge is for which vectors
α1, α2, . . . , αk with α = α1 + α2 + . . . + αk it holds that the solution remains
optimal. Such a result would be useful for the purpose of sensitivity analy-
sis for multiple parameter changes. For instance, in Example 8 we know that
the solution remains optimal for joint cost increases (α1, α2) in e1 = (v1, v1),
e2 = (v3, v3) such that α1 = 6 and α2 = 7, but also for any ~α such that α1 ≤ 6
and α2 ≤ 7. However, increases of α1 = 9 and α2 = 4 also keep the solution
optimal, but not increases of α1 = 12 and α2 = 1.

8. Conclusions and Future Work

This paper introduces the concept of set tolerances. In fact, since individual ele-
ments form sets of cardinality one, the theory on set tolerances can be regarded
as a generalization of the theory of single tolerances. Set tolerances allow us to
compute the largest change in the costs of sets of elements such that the cur-
rent solution remains optimal. The set upper and lower tolerances represent the
largest cost increase and decrease, respectively, α such that the current optimal
solutions remain optimal for a set of elements E. This paper provides bounds
to the value of the set upper and lower tolerances and one exact formula for the
value of the set lower tolerance for a cost function of type MAX.
After the formal introduction of set tolerances of this work, we suggest the
following research questions for set tolerances to different combinatorial mini-
mization problems such as the MSTP, LAP, TSP, and ABTSP:

• How can (upper and lower) set tolerances be exactly computed? Can set
upper and lower tolerances be computed in terms of single upper and lower
tolerances?

• What is the complexity of this computation?

• How do the computation and its complexity depend on the cardinality of
the set?

• Are the upper and lower bounds from this paper sharp for specific prob-
lems?

• How can cost changes smaller than or equal to the set tolerances be dis-
tributed over the elements in the set while keeping the current optimal
solution optimal?

If such effective computations are found, it is natural to create set tolerance
based algorithms for NP-hard combinatorial optimization problems. For in-
stance, such algorithms for the TSP can be based on the computation of set
tolerances for the MSTP (see [19] for the application of single tolerances) and
the LAP (see [9, 14, 34] for the application of single tolerances).
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