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Abstract

This paper estimates a New Keynesian model that explains key macro series, the

ten-year nominal yield curve, and the ability of the spread between long- and short-term

bond yields to predict future excess bond returns. The model also generates an upward

sloping nominal and real yield curve, produces a positive in�ation risk premium, and

recovers the prediction by the expectations hypothesis of no return predictability when

historical bond yields are risk-adjusted using term premia from the proposed model.

Key to obtaining these results is a new speci�cation of stochastic volatility that allows

high current in�ation to generate high future uncertainty.
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1 Introduction

One of the most prominent predictors of nominal bond returns is the slope of the yield

curve (see Fama and Bliss (1987), Fama and French (1989), Campbell and Shiller (1991),

among others). This relationship as been studied extensively in reduced-form dynamic term

structure models (DTSMs) using an exogenous pricing kernel with unobserved factors. These

models provide a close �t to bond yields but o¤er little economic intuition. Much e¤ort

has therefore been devoted to understanding the economic mechanisms that makes bond

returns predictable. For instance, the endowment model of Wachter (2006) emphasizes the

importance of time-varying risk aversion from habits, while Bansal and Shaliastovich (2013)

stress the importance of �uctuating uncertainty and recursive preferences. However, the

insights obtained from these endowment models are restricted by the assumption that both

consumption and in�ation dynamics are exogenous.

Another strand of the literature relies on dynamic stochastic general equilibrium (DSGE)

models with endogenous consumption and in�ation dynamics to obtain an even deeper under-

standing of bond return predictability and term premia in general. For instance, Rudebusch

and Swanson (2012) show that recursive preferences and stationary productivity shocks allow

the New Keynesian model to match the level and variability of term premia without distort-

ing macro fundamentals. Another important contribution is Kung (2015), who demonstrates

that endogenous growth and recursive preferences enable the New Keynesian model to pro-

duce term premia dynamics that generate bond return predictability.1 But so far, DSGE

models have not been able to match these unconditional properties of term premia together

with the historical evolution in bond yields and key macro variables. Such a requirement to

match both unconditional and conditional aspects of the data is satis�ed by reduced-form

DTSMs and has proven highly valuable, mainly because it gives policy makers and market

participants historical estimates of term premia.

Thus, a long-standing ambition in the literature has been to formulate a DSGE model

that �ts historical bond yields and generates bond return predictability from term premia

dynamics that have the same desirable properties as in reduced-form DTSMs. This means

that a DSGE model should pass the two requirements in Dai and Singleton (2002) for a

1Bond return predictability is also studied in the production model of Jermann (2013), which explores
the e¤ects of capital investments with multiple sectors in a model with exogenous in�ation.
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correct speci�cation of term premia. That is, i) reproduce the ability of the spread between

long- and short-term bond yields to predict future bond returns as in Campbell and Shiller

(1991) and ii) generate no return predictability when historical bond yields are risk-adjusted

using term premia from the DSGE model.2

The contribution of the present paper is to address this challenge by proposing a New

Keynesian model that i) explains historical bond yields and key macro time series, ii) matches

unconditional properties of these variables, and iii) generates term premia dynamics that

satisfy the two requirements mentioned above. The key new feature of the proposed model

is a modi�ed autoregressive speci�cation of stochastic volatility that allows high current

in�ation to generate high future uncertainty. We show that this ability of in�ation to increase

future volatility is present in the reduced-form macro uncertainty measure of Jurado et al.

(2015), and that it accounts for the main e¤ects of stochastic volatility in our model. The

results show that this link between in�ation and uncertainty is essential to generate bond

return predictability in the New Keynesian model without distorting macro fundamentals

and hence pass the �rst requirement for a correct speci�cation of term premia. We also

demonstrate that this new volatility speci�cation is crucial to meet the second requirement for

a correct speci�cation of term premia and ensure no return predictability in historical bond

yields when adjusted for term premia. Our analysis reveals that permanent productivity

shocks and demand shocks account for most of the variation in nominal term premia and

hence explain deviations from the expectations hypothesis in historical bond yields.

To provide additional support for our New Keynesian model, we further show that it

matches the level of the upward sloping US yield curve, and that the variability of all bond

yields are consistent with the data. The real yield curve is also upward sloping in our model,

but by less than for nominal yields, and this generates a positive and upward sloping in�ation

risk premium. We also �nd that most of the variation in nominal term premia is due to real

term premia, which is consistent with the predictions from the reduced-form DTSMs in

Chernov and Mueller (2012) and Abrahams et al. (2016). Taking the analysis beyond bond

yields, we �nally demonstrate that the proposed New Keynesian model also generates an

2Early contributions that model historical bond yields and macro variables are Graeve et al. (2009) and
Bekaert et al. (2010), but they do not allow for time-varying term premia. This feature is incorporated
in later models by Binsbergen et al. (2012), Dew-Becker (2014), Amisano and Tristani (2017), Kliem and
Meyer-Gohde (2017), and Bianchi et al. (2018), but they do not test the two requirements for a correct
speci�cation of term premia.
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equity premium of six percent. Here, and throughout we restrict risk aversion to 10 using

the formulation of recursive preferences in Andreasen and Jørgensen (forthcoming).

Our analysis is also related to the growing macro literature studying uncertainty shocks

in DSGE models (see Justiniano and Primiceri (2008), Fernandez-Villaverde et al. (2011),

Fernández-Villaverde et al. (2015), Basu and Bundick (2017), among many others). Here,

volatility evolves according to an autoregressive process that is independent of the distur-

bances to the level of the structural shocks. Given the fairly small e¤ects of uncertainty

shocks in most DSGE models, this implies that volatility is only weakly correlated with

the business cycle. Our new volatility speci�cation relaxes this assumption and allows for

a stronger correlation between uncertainty and the business cycle. Bond market dynamics

clearly support this extension of the New Keynesian model, where we �nd the largest e¤ects

of stochastic volatility following ordinary �level�shocks due to their impact on in�ation and

subsequently uncertainty. This �nding is consistent with the reduced-form evidence in Lud-

vigson et al. (2019), showing that uncertainty i) reacts endogenously to level shocks and ii)

a¤ects the economy by altering the responses of level shocks. Thus, our desire to understand

term premia dynamics has revealed a new channel through which in�ation and uncertainty

a¤ect the economy.

The remainder of this paper is organized as follows. Section 2 presents the classic bond

return predictability regression and relates it to DSGE models. Section 3 introduces the

New Keynesian model, while our estimation approach is described in Section 4. The main

empirical results are provided in Section 5, with robustness checks deferred to Section 6. We

�nally discuss additional model implications in Section 7 and conclude in Section 8.

2 Bond Return Predictability

A natural starting point for studying bond return predictability is the expectations hypoth-

esis. This hypothesis states that any long-term bond yield is the average of expected future

short rates, and that bond returns therefore are unpredictable. Letting r(k)t denote the k-

period bond yield at time t, Campbell and Shiller (1991) suggest to test the expectations

hypothesis by regressing the change in the long-term bond yield r(k�m)t+m � r(k)t on the yield

3



spread r(k)t � r(m)t measuring the slope of the yield curve. That is,

r
(k�m)
t+m � r(k)t = �k + �k

m

k �m

�
r
(k)
t � r(m)t

�
+ ut+m;k; (1)

where ut+m;k is an error term. We estimate this regression on US bond yields from 1961 Q2

to 2016 Q2 as provided by Gürkaynak et al. (2007), with m = 4 to obtain yearly changes in

yields as typically considered (see Cochrane and Piazzesi (2005), Cieslak and Povala (2015),

among others). The regressions imply �8 = �0:74, �20 = �1:55, and �40 = �2:44 at the
two-, �ve-, and ten-year bond yield, respectively. That is, we obtain the standard �nding

that �k is negative and decreasing with maturity, meaning that long-term bond yields tend

to fall when the yield spread is high. The expectations hypothesis implies �k = 1, which we

clearly reject at a 5% signi�cance level (see Figure 2 below). This implies that bond returns

are predictable, because (1) is equivalent to running the predictability regression

hpr
(k)
t+m �

m

4
r
(m)
t = ~�k + ~�k

�
r
(k)
t � r(m)t

�
+ "t+m;k;

where hpr(k)t+m � �k�m
4
r
(k�m)
t+m + k

4
r
(k)
t is the holding period return on a k-period bond and

~�k � m
4
(1� �k).3 Hence, the negative estimates of �k imply that ~�k > 0, making excess

bond returns positively correlated with the yield spread.

The most common explanation for the rejection of the expectations hypothesis is time-

varying term premia. A prominent example is Dai and Singleton (2002), which uses the

pattern in �k to select the most appropriate speci�cation of term premia in reduced-form

DTSMs. The loadings �k are unidenti�ed in a �rst- and second-order perturbation approxi-

mation to a DSGE model (where �k = 1 by construction), but they become identi�ed when

using at least a third-order approximation. Thus, the regression loadings in (1) may also

serve as a useful diagnostic tool for DSGE models, because these loadings reveal how the

uncertainty corrections in a DSGE model should evolve across the business cycle. The next

section exploits this insight to modify a standard macroeconomic model such that its uncer-

tainty corrections and term premia become more �exible as required to match the empirical

pattern in �k.

3The intercept is given by ~�k = ��k
�
k
4 � 1

�
.
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3 A New Keynesian Model

This section presents a small New Keynesian model for the US economy. The main purpose of

this model is to endogenously express consumption and in�ation as functions of the structural

shocks in the economy, and hence derive a stochastic discount factor from �rst principles. It

is widely acknowledged that the standard version of the New Keynesian model does well in

matching aggregate quantities, in�ation, and the short rate, but that it struggles to explain

asset prices. We therefore augment the New Keynesian model with the �exible formulation

of recursive preferences in Andreasen and Jørgensen (forthcoming) and include stochastic

volatility. Both extensions have a relatively small e¤ect on aggregate quantities but a sizable

e¤ect on in�ation and asset prices. We proceed by presenting the decision problem of the

households and the �rms in Section 3.1 and 3.2, respectively. The behavior of the central

bank is outlined in Section 3.3, while our new speci�cation of stochastic volatility is presented

in Section 3.4. Section 3.5 computes bond prices and term premia, Section 3.6 presents the

model solution, and Section 3.7 discusses properties of term premia at an overall level.

3.1 The Households

We consider an in�nitely lived representative household with recursive preferences as in

Epstein and Zin (1989) and Weil (1990). Using the formulation in Rudebusch and Swanson

(2012), the value function Vt is given by

Vt = ut + �
�
Et[V 1��t+1 ]

�1=(1��)
(2)

when the utility function ut > 0 for all t.4 Here, � 2 (0; 1) is the subjective discount

factor and Et [�] denotes the conditional expectation given information in period t. The main
purpose of � 2 R n f1g is to endow the household with preferences for when uncertainty
is resolved, unless � = 0 and (2) reduces to expected utility. Based on Kreps and Porteus

(1978), it follows that (2) implies preferences for early (late) resolution of uncertainty if � > 0

(� < 0) for ut > 0, whereas the opposite sign restrictions apply when ut < 0. Andreasen and

4The standard formulation of recursive preferences provided in Epstein and Zin (1989), i.e. V̂t =�
û�t + �

�
Et[V̂ �̂t+1]

� �
�̂

� 1
�

, is obtained by letting Vt = V̂ �t , ut = û�t , and �̂ = � (1� �). For ut < 0, we

de�ne Vt = ut � �Et[(�Vt+1)1��]
1

1�� as in Rudebusch and Swanson (2012).
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Jørgensen (forthcoming) further argue that the size of this timing attitude is proportional to

�, meaning that numerically larger values of � generate stronger preferences for early (late)

resolution of uncertainty.

The utility function ut � u (ct; lt) is assumed to depend on the number of consumption
units ct bought in the goods market and the provided labor supply lt to �rms. Following An-

dreasen and Jørgensen (forthcoming), we also include a constant u0 in the utility function to

account for utility from goods and services that are not acquired in the goods market. This

could be utility from government spending or utility from goods produced and consumed

within the household. As shown in Andreasen and Jørgensen (forthcoming), the main reason

for introducing u0 is to separately control the level of the utility function and hence disen-

tangle the timing attitude from relative risk aversion (RRA), which otherwise are tightly

linked in the standard formulation of recursive preferences. Using a power speci�cation to

quantify the utility from market consumption ct and similarly for leisure 1� lt, we let

u (ct; lt) = dt

"
1
1�� c

1��
t + z1��t nt'0

(1� lt)1�
1
'

1� 1
'

+ u0z
1��
t

#
: (3)

Here, dt is a preference shock, which temporally increases or decreases the utility from a

given level of ct and lt, implying that dt operates as a demand shock. The variable nt is

also exogenous and temporally shifts the household�s incentive between ct and lt, meaning

that nt may be interpreted as a labor supply shock. Market consumption grows with the

rate of the productivity level zt, and it is therefore necessary to scale the utility from leisure

and nonmarket consumption by z1��t to ensure that these terms do not diminish relative to
1

1�� c
1��
t along the balanced growth path. This scaling is discussed and motivated further in

Rudebusch and Swanson (2012) and Andreasen and Jørgensen (forthcoming).5

The parameter � > 0 determines the intertemporal elasticity of substitution (IES) as

1=�, which measures the percentage change in market consumption growth for a one percent

change in the real interest rate when ignoring uncertainty. The Frisch labor supply elasticity

with respect to the real wage is '
�
1
lt
� 1
�
and therefore mainly determined by ' > 0. The

endogenous labor supply gives the household an additional margin to absorb shocks and this

modi�es existing expressions for RRA. Using the results in Swanson (2018), it follows that

5Our results are robust to restricting u0 = 0 as in the standard implementation of recursive preferences,
provided one allows for high RRA (see Section 6.3).
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RRA in the steady state (ss) is given by

RRA =
�

1 + �' ~wss(1�lss)
~css

+
� (1� �)

(1� �)u0~c��1ss + 1 + 1��
1� 1

'

~wss(1�lss)
~css

;

where ~css = ct=ztjss and ~wss wt=ztjss refer to the steady state of market consumption and
the real wage relative to the productivity level. Given that the IES is determined by � and

that � controls the strength of the timing attitude, the level of the utility function u0 is the

key parameter for determining RRA, as shown in Andreasen and Jørgensen (forthcoming).

The real budget constraint for the household is ct+Et [Mt;t+1Xt+1] =
Xt
�t
+wtlt+Dt. That

is, resources are spent on market consumption goods ct and nominal state-contingent claims

Xt+1, which are priced using the nominal stochastic discount factor Mt;t+1. The household�s

income is given by the real value of state-contingent claims bought in the previous period

Xt=�t, the real wage income wtlt, and real dividend payments from �rmsDt. Here, �t denotes

the gross in�ation rate.

The �rst-order conditions for the utility maximizing household are

Et [Mt;t+1e
rt ] = 1 (4)

z1��t nt'0 (1� lt)
� 1
' = c��t wt; (5)

where rt is the net one-period nominal risk-free interest rate. Equation (4) is the well-known

consumption-Euler equation, while (5) is the optimality condition for the labor supply.

3.2 The Firms

Output yt is produced by a perfectly competitive representative �rm, which combines di¤er-

entiated intermediate goods yt (i) using yt =
�R 1

0
yt (i)

��1
� di

� �
��1

with � > 1. The demand

for the ith good is given by yt (i) =
�
Pt(i)
Pt

���
yt, where Pt �

�R 1
0
Pt (i)

1�� di
� 1
1��

denotes the

aggregate price level and Pt (i) is the price of the ith good.

Intermediate �rms produce slightly di¤erentiated goods using yt (i) = ztatk
�
sslt (i)

1��,

where kss and lt (i) denote capital and labor services at the ith �rm, respectively. The

variable at captures transitory productivity shocks, while zt speci�es the long-term growth
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path for the productivity level. Both at and zt are taken to be exogenous and speci�ed

below in Section 3.4. Each intermediate �rm can freely adjust its labor demand at the given

market wage wt. Price stickiness is introduced as in Rotemberg (1982), where � � 0 controls
the size of �rms�real cost �

2
(Pt (i) = (Pt�1 (i)�ss)� 1)2 yt when changing the optimal nominal

price Pt (i) of the good they produce. As in Rudebusch and Swanson (2012), each �rm uses

�ksszt units of output for investment to maintain a constant capital stock along the balanced

growth path of the economy. The �rst-order conditions for pro�t maximization are

wt = mct (1� �) ztatk�ssl��t (6)

yt (1� �) + Et
�
�Mt;t+1�t+1

�
�t+1
�ss

� 1
�
�t+1
�ss

yt+1

�
+mctyt� = �

�
�t
�ss

� 1
�
yt
�t
�ss
; (7)

where mct denotes marginal costs. Equation (6) determines labor demand, and (7) implies

an aggregate supply relation between output and in�ation.

The resource constraint reads ct + zt�kss =
�
1� �

2

�
�t
�ss
� 1
�2�

yt, where
�
2

�
�t
�ss
� 1
�2
yt

is the output loss from price stickiness.

3.3 The Central Bank

The central bank sets the one-period nominal interest rate rt as

rt = rss + ��;t log

�
�t
�ss

�
+ �y log

�
yt
zt~yss

�
; (8)

based on a desire to close the in�ation and the output gap. Note that the in�ation gap

is de�ned relative to steady state in�ation �ss, and that the output gap is expressed as yt
in deviation from its level along the balanced growth path zt~yss, where ~yss = yt=ztjss. To
accommodate deviations in monetary policy from a simple Taylor-rule, we follow Fernández-

Villaverde and Rubio-Ramirez (2008), Ang et al. (2011), among others and allow for a time-

varying coe¢ cient ��;t in the Federal Reserve�s response to the in�ation gap. A relatively

high value of ��;t captures episodes where the Federal Reserve is mostly focused on stabilizing

the in�ation gap, whereas a relatively low value of ��;t represents episodes with more focus

on the output gap. Variation in ��;t is taken to be exogenous and speci�ed below.
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3.4 The Structural Shocks

We index the �ve structural shocks in the model by xt, i.e. xt 2
�
�z;t; nt; dt; ��;t; at

	
where

�z;t � zt=zt�1 is the gross growth rate in the productivity level. The adopted speci�cation
of a shock with stochastic volatility �t is given by

log xt = vx;t�t; (9)

where vx;t+1 evolves as

vx;t+1 = �xvx;t + �x"x;t+1; (10)

with j�xj < 1 and �x � 0. The innovation "x;t is assumed to be normal and independently
distributed across time, i.e. "x;t � NID (0; 1). Leading (9) by one period and inserting (10),
it follows that

log xt+1 = �x
�t+1
�t

log xt + �t+1�x"x;t+1: (11)

Thus, (11) is nearly identical to the standard volatility speci�cation in the literature, ex-

cept for the persistence coe¢ cient �x�t+1=�t that replaces �x (see Fernández-Villaverde and

Rubio-Ramírez (2007), Justiniano and Primiceri (2008), among others). This di¤erence is

not essential for our application, where �t+1=�t remains close to one for all periods.6 The

main advantage of the volatility speci�cation in (9) and (10) is that it only requires one

extra state (vx;t) per shock in the model, whereas the traditional speci�cation of stochastic

volatility induces two additional states (log xt�1 and "x;t). This state reduction greatly helps

to keep the proposed model simple and suitable for estimation.

The considered process for �t is given by

�t+1 = �ss (1� ��) + ���t + 
�
�
log

�
�t
�ss

�
� E

�
log

�
�t
�ss

���
+ ��"�;t+1; (12)

where j��j < 1, 
� 2 R, �� � 0, and "�;t+1 � NID (0; 1). The �rst two terms are standard,
whereas the third term represents our key extension. As in the traditional speci�cation

of �t, the innovation "�;t is independent of
�
"�z ;t; "n;t; "d;t; "�� ;t; "a;t

	
, which also display

mutually independence. Thus, volatility is centered around �ss > 0 and has an autoregressive

6For instance, our preferred speci�cation in Section 5 implies that �t+1=�t rarely goes outside the interval
[0:96; 1:04].
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component ���t to capture the persistent nature of uncertainty. The traditional speci�cation

of stochastic volatility simply adds ��"�;t+1 to these two terms, making �t independent of

the structural shocks hitting the economy. Given the fairly small e¤ects of uncertainty

shocks in most New Keynesian models, this makes �t weakly correlated with the business

cycle. The purpose of the new term 
�

�
log
�
�t
�ss

�
� E

h
log
�
�t
�ss

�i�
in (12) is to relax this

assumption and accommodate the possibility that uncertainty is more closely related to the

business cycle. The use of in�ation to capture the link between uncertainty and the business

cycle is mainly motivated by the work of Coibion and Gorodnichenko (2011). They show

that higher steady state in�ation in the New Keynesian model makes indeterminacy and

hence erratic variation in macro variables more likely. Thus, Coibion and Gorodnichenko

(2011) establish a positive relation between the long-term in�ation rate and macroeconomic

uncertainty, which we extend to more short-term business cycle dynamics when 
� > 0.

The unconditional mean E [log (�t=�ss)] is approximated by the auxiliary variable auxt,
which captures the mean of log (�t=�ss) that is di¤erent from zero in a nonlinear approxima-

tion. Following Andreasen et al. (2018), we let auxt = (1� 
)Et
hP1

k=0 

k log

�
�t+k
�ss

�i
with


 = 0:99995, which ensures that auxt is basically constant at the mean of log (�t=�ss).

3.5 Bond Pricing

The presence of state contingent claims imply that all �nancial assets in the economy

can be priced using standard no-arbitrage arguments. Thus, the price in period t of a

default-free zero-coupon bond B(k)t maturing in k periods with a face value of one dollar

is B(k)t = Et
h
Mt;t+1B

(k�1)
t+1

i
for k = 1; :::; N with B(0)t = 1. With continuos compounding,

the corresponding yield to maturity is r(k)t = � 1
k
logB

(k)
t , where r

(1)
t � rt. Bond prices are

therefore entirely determined by the nominal stochastic discount factor as given by

Mt;t+1 = �
dt+1
dt

�
ct+1
ct

���0@�Et �V 1��t+1

�� 1
1��

Vt+1

1A�

1

�t+1
(13)

when ut > 0 for all t.7 The �rst term �dt+1=dt is the subjective discount factor adjusted

for demand shocks. The second term is the well-known ratio of future to current marginal

7When ut < 0 for all t, Vt+1 is replaced by �Vt+1 in (13).

10



utility of market consumption (ct+1=ct)
��. The third term is due to recursive preferences

and ampli�es the e¤ect of unexpected changes in household utility as measured by the value

function. This function summarizes current and future utility, implying that the expected

future level of market consumption, leisure, and non-market consumption a¤ect bond prices

when � 6= 0.
To study the implied bond risk premia, we follow Rudebusch and Swanson (2012), Adrian

et al. (2013), among others and de�ne term premium TP
(k)
t as the di¤erence between r(k)t

and the corresponding yield under risk-neutral pricing er(k)t . That is, TP (k)t = r
(k)
t �er(k)t whereer(k)t = � 1

k
log eB(k)t and eB(k)t = e�rtEt

h eB(k�1)t+1

i
with eB(0)t = 1.

3.6 Model Solution

The state vector for this model is given by xt =
h
�t v�z ;t vn;t vd;t v�� ;t va;t

i0
, where

only �t is endogenous. All the remaining variables appear in yt, including the labor supply,

consumption, in�ation, and all bond prices. The exact solution to the model is

yt = g (xt; �;�) (14)

xt+1 = h (xt; �;�) + ��"t+1;

where "t =
h
"�;t "�z ;t "n;t "d;t "�� ;t "a;t

i0
and � denotes the structural parameters.

The auxiliary parameter � � 0 scales �, which contains the standard deviations to "t. The
functions g (�) and h (�) are not available in closed form and approximated by a third-order

perturbation solution to accommodate time-varying term premia. This is done by �rst using

invariant transformations to obtain an equivalent representation of the model without the

trending variables Vt, ct, wt, yt, and zt. For instance, (2) and (13) are expressed in terms of

the scaled value function ~Vt � Vt=z1��t and scaled consumption ~ct � ct=zt. The third-order
approximation is then computed for this transformed version of the model at the steady

state, i.e. at xt = xt+1 = xss and � = 0.8

8For an e¢ cient implementation, we use the codes of Binning (2013) to compute the third-order approx-
imation to a special version of the model without bond prices exceeding one period. All remaining bond
prices and bond risk premia are computed afterwards using the method of Andreasen and Zabczyk (2015).
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3.7 Properties of Term Premia

Although the perturbation method does not analytically show how � a¤ects derivatives of

g (�) and h (�), it is still informative to analyze the approximation of term premia at an

overall level. To do so, recall that the third-order perturbation approximation to g (�) is

yt = yss + gxx̂t +
1

2
gxx (x̂t 
 x̂t) +

1

6
gxxx (x̂t 
 x̂t 
 x̂t) +

1

2
g�� +

1

2
g��xx̂t; (15)

where x̂t � x̂t�xss and subscripts on g (�) denote derivatives evaluated at the steady state for
a given value of �. The derivatives gx, gxx, and gxxx represent a third-order approximation

to the deterministic version of the model. Given that term premia are zero in the absence

of uncertainty, it follows that rows in yt which represent term premia have zero loadings

in gx, gxx, and gxxx as noted in Andreasen (2012). Hence, a third-order perturbation

approximation to term premia in our model is simply

TPt =
1

2
gTP�� +

1

2
gTP��xx̂t (16)

where gTP�� and gTP��x represent the entries in g (�) for term premia. This shows that term

premia are linear (i.e. a¢ ne) in the states as typically assumed in reduced-form DTSMs fol-

lowing Du¤ee (2002). However, the parametric restrictions on term premia in these reduced-

form models are clearly less restrictive than in our New Keynesian model with a stochastic

discount factor derived from �rst principles.

Our second observation is that g�� and g��x correct for variance risk, and that the

conditional variance of the state innovations ��0 enter linearly in the equations determining

g�� and g��x (see Schmitt-Grohé and Uribe (2004) and Andreasen (2012), respectively).

Thus, one way for the New Keynesian model to avoid the well-known problem of too low

and stable term premia is to increase the conditional variance ��0 because it ampli�es g��
and g��x. But an excessive level of ��0 has the drawback of generating too much volatility

in bond yields and aggregate quantities, as emphasized in Rudebusch and Swanson (2008).

A popular way to avoid this variance trade-o¤ in the New Keynesian model is to introduce

recursive preferences. These preferences enter through a Jensen�s inequality e¤ect on the

value function, meaning that they only a¤ect g�� and g��x in (15). This property of recursive

preferences greatly helps to increase the �exibility of term premia, and allows the New
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Keynesian model to match the level and variability of term premia without distorting macro

fundaments, as shown in Rudebusch and Swanson (2012).

Extending the New Keynesian model with stochastic volatility adds further �exibility to

term premia, because it mainly a¤ects the approximation solution through g�� and g��x.

For the traditional speci�cation of stochastic volatility, this additional �exibility is primarily

obtained by making �t an extra state variable in the expression for term premia. As shown in

Andreasen (2012), this may greatly increase the variability of term premia without distorting

macro fundamentals. But the weak correlation between �t and the business cycle does not

help to control the comovement of term premia with macro fundaments and the yield spread,

as summarized by the predictability result in Section 2. The extension of stochastic volatility

that we propose in (12) through 
� alleviates this constraint by making �t comove with macro

fundamentals. As we will show below, this comovement of �t adds valuable �exibility to term

premia and enables the New Keynesian model to satisfy the two requirements for a correct

speci�cation of term premia.

4 Estimation Methodology

This section describes how we estimate the New Keynesian model. We proceed by presenting

our data in Section 4.1, outline the adopted estimation routine in Section 4.2, and discuss

the calibrated values for the parameters that are not estimated in Section 4.3.

4.1 Data

We estimate the model using quarterly US data from 1961 Q2 to 2016 Q2. The dynamics

of the macro economy is represented by i) labor supply log lt, ii) consumption growth �ct,

and iii) in�ation.9 The ten-year nominal yield curve is represented by the three-month, one-

year, three-year, �ve-year, seven-year, and ten-year bond yield. These yields are taken from

Gürkaynak et al. (2007), except at the three-month maturity where we use the implied rate

9The labor supply is measured by the average weekly hours of production and nonsupervisory employees
in the manufacturing sector, normalized by 5 � 24 to match the de�nition of labor in our model. The
consumption growth rate is calculated from real per capita nondurables and service expenditures. In�ation
is measured by the year-on-year growth rate in the consumer price index (CPI) for all urban consumers. All
three data series are downloaded from the Federal Reserve Bank of St. Louis.
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on a three-month Treasury Bill. These nine time series are placed in the vector yobst and

expressed in annualized terms except for log lt.

4.2 Robusti�ed Inference with Nonlinear Filtering

The model solution in Section 3.6 includes nonlinear terms with the unobserved state vector

xt, implying that the Kalman �lter cannot be used to estimate the model. Instead, we rely

on the central di¤erence Kalman �lter (CDKF) developed by Norgaard et al. (2000), which

is a nonlinear extension of the Kalman �lter. The CDKF accommodates measurement errors

in yobst , and these errors vt are speci�ed to be uncorrelated Gaussian white noise, as typi-

cally assumed when estimating DSGE models and reduced-form DTSMs (see, for instance,

Fernández-Villaverde and Rubio-Ramírez (2007) and Joslin et al. (2011), respectively). That

is, vt s NID (0;Rv) where Rv is a diagonal matrix. Unlike particle �lters, the updating

rule for the states in the CDKF is restricted to have a linear functional form, implying that

the recursive �ltering equations only depend on �rst and second moments. The CDKF ap-

proximates these moments by a deterministic sampling procedure, and this makes the CDKF

computationally much faster than any particle �lter and generally also more accurate than

the well-known extended Kalman �lter.

A likelihood function can be derived from the CDKF under the assumption that the pre-

diction errors for yobst are Gaussian. However, this distributional speci�cation does not hold

exactly due to the nonlinear terms in the model solution. The CDKF therefore only pro-

vides a quasi log-likelihood function 1
T

PT
t=1 Lt (�), which can be used for a quasi maximum

likelihood (QML) estimation, as suggested in Andreasen (2013).

A possible limitation of any QML approach (as with standard maximum likelihood) is its

lack of robustness to model misspeci�cations other than the distributional assumption of the

prediction errors for yobst , in particular without priors to regularize the likelihood function

as shown in Ruge-Murcia (2007). An obvious possible source of misspeci�cation in our case

is that vt may not be uncorrelated Gaussian white noise, but may contain cross-correlation,

auto-correlation, and outliers. One way to account for cross- and auto-correlation in vt
is to follow Ireland (2004) and use a vector autoregressive model for vt inside the CDKF.

Unfortunately, this procedure introduces a lot of extra unknown parameters in our case

with nine observables. We want to avoid such an extension of the parameter space, and
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we therefore suggest a computationally less demanding alternative. The simple idea behind

our procedure is to consider a set of unconditional moments that are una¤ected by the

aforementioned misspeci�cations in vt and then shrink the QML estimates towards these

more robust moments. The main bene�t of this procedure to robustify a likelihood-based

estimator is that no additional parameters are introduced, and that unconditional moments

are easy to compute for DSGE models. We denote these shrinkage moments by 1
T

PT
t=1mt

in the sample and by E [m (�)] in the model. Hence, the considered estimator is given by

�̂ =argmax
�2�

1

T

PT
t=1 Lt (�)� �g1:T (�)

0Wg1:T (�) (17)

where � is the feasible domain of �, g1:T (�) � 1
T

PT
t=1 gt (�) with gt (�) � mt�E [m (�)],

andW is a diagonal weighting matrix containing the inverse of the standard errors for the

shrinkage moments.10

The nature of the estimator in (17) is determined by � � 0, which controls the weight

assigned to the shrinkage moments relative to the sample average of Lt (�). We obviously
recover the standard QML estimator when � = 0, while �̂ converges to the generalized

methods of moments (GMM) estimator in Hansen (1982) when � becomes su¢ ciently large.

We will generally consider a small amount of shrinkage by letting � = T , which in our setting

implies that shrinkage constitutes a fairly small part of the objective function, typically about

5% to 10%. Our results are not particularly sensitive to increasing the degree of shrinkage

further, although we do �nd notable e¤ects of shrinkage when compared to the standard

QML estimator with � = 0.11

To ensure closed-form expressions for the model-implied shrinkage moments, we apply

the pruning scheme of Andreasen et al. (2018) when setting up the state space system

for the approximated version of the New Keynesian model.12 This implies that our new

10Another possibility is to use the optimal weigthing matrix, but this version of (17) is not considered
to avoid well-known small-sample distortions from estimating large co-variance matrices in moment-based
estimators (see, for instance, Smith (1993)).
11It may also be informative to note that (17) belongs to the class of Laplace type or quasi-Bayesian

estimators of Chernozhukov and Hong (2003), where a potentially misspeci�ed log-likelihood function (as
considered in our case) may be used within a Bayesian setting. When this estimator is combined with the
endogenours prior speci�cation in Christiano et al. (2011) using a pre-sample of length T �, we obtain the
objective function in (17) with � = T �=2.
12The pruning scheme is not essential in our case, because the considered model has only one endogenous

state (�t), and partly for this reason appears to be stable when simulated without the pruning scheme.
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estimator can be implemented without resorting to simulation and belongs to the general

class of extremum estimators, as summarized in Hayashi (2000). Its asymptotic properties

are therefore easily derived in Appendix A.1. Hence, for a su¢ ciently large sample T , one

may expect �̂ to be normally distributed around its true value and with the covariance matrix

V ar
�
�̂
�
=
1

T
A�1V ar (qt)A

�1:

Here, qt � �st (�)+2�G (�)0Wgt (�) is the score function for observation t when accounting

for shrinkage, where st (�) � @Lt (�) =@� denotes the score of the quasi log-likelihood function
in period t andG (�) � @g1:T (�) =@�0 is the Jacobian for the shrinkage moments. The matrix
A denotes the Hessian of �̂ and is estimated by

Â = 2�G
�
�̂
�0
WG

�
�̂
�
� 1

T

TX
t=1

Ht

�
�̂
�
:

Here, Ht (�) � @st (�) =@�0 refers to the Hessian of Lt, which we compute using �rst-order
numerical derivatives of Lt as in Harvey (1989). The score function qt will generally display
autocorrelation and heteroskedasticity, and its variance V ar (qt) is therefore obtained using

the estimator in Newey and West (1987) with a bandwidth of 10 lags.

We use two classes of shrinkage moments. The �rst class contains �rst and second

unconditional moments of yobst . These moments are una¤ected by the aforementioned mis-

speci�cations in vt and helps to robustify the QML estimates. This is illustrated in a Monte

Carlo study in Appendix A.2, where shrinkage towards these moments generally give smaller

parameter biases and more reliable inference than standard QML when vt contains cross-

correlation, auto-correlation, and outliers but the quasi log-likelihood function is computed

with vt � NID (0;Rv). When vt is uncorrelated Gaussian white noise as assumed in the

CDKF, we unexpectedly �nd no bene�t of shrinkage. Here, shrinkage mainly reduces the

e¢ ciency of the standard QML estimator, which nearly is unbiased and provide reliable

inference in this case.

The second class of moments we consider capture the information in the Campbell-Shiller

regression loadings at the three-, �ve-, and ten-year maturity, and hence assigns more weight

to the evidence against the expectations hypothesis than implied by the considered panel of

bond yields used to compute the quasi log-likelihood function. For these loadings, we include
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both the covariance Cov(r(k�m)t+m � r(k)t ; r
(k)
t � r(m)t ) and the variance V ar(r(k)t � r(m)t ) related

to �k in (1) at the three considered maturities.

4.3 Calibrated Parameters

Not all parameters in the New Keynesian model are well-identi�ed from yobst , and they are

therefore determined by standard calibration arguments as commonly done in the literature

(see Christiano et al. (2005), Justiniano and Primiceri (2008), among others). Hence, we let

� = 0:025 and � = 0:4 as typically assumed for the US economy. We also consider an average

price markup of 20% with � = 6, and we set the ratio of capital to output in the steady state

to 2:5 as in Rudebusch and Swanson (2012). The value of �z;ss is set to match the mean of

consumption growth, implying that �z;ss = 1:0049. For the volatility process, we normalize

the mean of �t to one by letting �ss = 1, which generally also ensures that �t stays positive

when simulating the estimated versions of the New Keynesian model reported below. The

sticky price parameter � is badly identi�ed, and we therefore use a linear version of our model

to set � to match a Calvo parameter of �p = 0:75, giving an average duration for prices of

four quarters.13 Most micro estimates of the Frisch labor supply elasticity for males are in

the range from 0:10 to 0:40 according to Keane (2011). To help the New Keynesian model

generate low variability in the labor supply, we consider a Frisch elasticity in the lower part

of this interval by letting ' = 0:075, which implies a Frisch elasticity of about 0:15 in the

steady state.

Given this calibration of ' and our �nding below that � is larger than one, the utility

function in (3) is negative. Hence, the parameter � characterizing the recursive preferences in

(2) must be negative to generate preferences for early resolution of uncertainty. The model�s

goodness of �t generally improves the more negative � gets, but the performance gain trails

o¤when � gets below �60 in our case.14 We therefore simply let � = �60, which imply that
a third-order perturbation solution delivers a reasonable accurate approximation as shown

in Appendix B. This value of � also ensures a low and plausible level of the timing premium

as introduced in Epstein et al. (2014). We �nally set the constant u0 to get a steady state

RRA of 10 as in Bansal and Yaron (2004).

13The mapping is � = ((1� � + ��) (� � 1)�p) =
�
(1� �p) (1� �)

�
1� �p��

1� 1
 

z;ss

��
.

14Rudebusch and Swanson (2012) report a similar property of recursive preferences in their model.
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The size of the measurement errors in yobst have a relatively small e¤ect on the estimates,

and we therefore simply assume that 10% of the variation in the three macro variables is due

to measurement errors.15 This implies measurement errors with standard deviations of i) 17

basis points for log lt, ii) 18 basis points for consumption growth, and iii) 29 basis points

for in�ation. The standard deviation for the measurement errors in all bond yields is set

to 15 basis points, which corresponds to 5% of the average standard deviations in the six

considered bond yields.

5 Estimation Results

This section presents the main results for our preferred speci�cation of the New Keynesian

model. We proceed by discussing the estimated parameters and the model �t in Section

5.1, while stylized unconditional moments are reported in Section 5.2. The model-implied

Campbell-Shiller regression loadings are examined in Section 5.3, and the model�s ability to

explain deviations from the expectations hypothesis in these regressions is studied in Section

5.4. The estimated term premium is provided in Section 5.5. We �nally explain the key

mechanisms of the model in Section 5.6, and study the model�s implications for conditional

heteroskedasticity in Section 5.7.

5.1 Estimated Parameters and Model Fit

The �rst column in Table 1 reports the estimated model parameters in our preferred version

of the New Keynesian model. This model is denotedMM;CS, where the superscripts indicate

that shrinkage is applied based on the �rst and second unconditional moments of yobst (by

"M") and the selected Campbell-Shiller moments (by "CS"). For the utility of consumption,

we �nd �̂ = 6:67, which implies an IES of 0:15. This relatively low IES is consistent with Hall

(1988), Barsky et al. (1997), and Yogo (2004), which estimate the IES to be between zero

and 0:2. We also �nd a realistic timing premium of 9%, meaning that the household is willing

to give up 9% of total lifetime consumption to have all uncertainty resolved in the following

period. The timing premium is here computed as in Andreasen and Jørgensen (forthcoming).

15A similar assumption is used in An and Schorfheide (2007), which assume that 20% of the variation in
the data can be assigned to measurement errors.
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Permanent productivity shocks are found to be highly persistent
�
�̂�z = 0:973

�
and with

small innovations
�
�̂�z = 3:4� 10�4

�
, meaning that �z;t captures long-run risk as in Bansal

and Yaron (2004). We also �nd that 
̂� = 4:46 with a tight standard error of 0:475, meaning

that 
� is di¤erent from zero at all conventional signi�cance levels. Thus, the proposed

extension of the volatility speci�cation in (12) is strongly supported by the data, showing

that high in�ation generates high future uncertainty. The central bank is found to assign

more weight to stabilizing in�ation than economic activity with �̂� = 6:93 and �̂y = 0:03.

Although this is a common �nding, the value of �� is somewhat higher than typically reported

in the literature. However, re-estimating the model with 
� = 0 reduces �̂� to 3:86 according

to Table 1. This shows that the positive link between in�ation and uncertainty, which we

propose in this paper, gives the central bank a stronger incentive to stabilize in�ation and

hence uncertainty.16

Figure 1 plots the data and the model-implied time series by black and red lines, respec-

tively. We generally �nd a very close �t to the three macro variables and the six bond yields.

This is also evident from Table 2, showing that the standard deviations for the measurement

errors in bond yields are between 8 and 24 basis points, and hence comparable to standard

three-factor reduced-form DTSMs. For instance, Cheridito et al. (2007) report model errors

with standard deviations between 10 and 27 basis points. The bottom part of Table 2 fur-

ther shows that the applied shrinkage inMM;CS has a small e¤ect on the optimal value of

the objective function, where the GMM moment conditions only account for about 6% (i.e.

1:9=33:4) of its value.

5.2 Unconditional Stylized Moments

Table 3 explores the ability of MM;CS to match several stylized unconditional moments

for the US economy. The �rst column in Table 3 shows US sample moments (and their

bootstrapped 95% con�dence bands), while the second column shows the corresponding

population moments inMM;CS. We �rst note thatMM;CS reproduces the mean level of the

three macro variables and all bond yields. For instance, the level of the three-month yield is

4:89% vs. 4:76% in the data, and the level of the ten-year bond yield is 6:25% vs. 6:35% in

16Without stochastic volatility, unreported results show that the weight assigned to the in�ation gap falls
further to 3:52, which is close to the estimate of 3:14 reported in Andreasen et al. (2018) for a New Keynesian
model with homoskedastic shocks approximated to third order.
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the data. This implies that the average yield spread is 136 basis points inMM;CS compared

to 159 basis points in the sample.

Our New Keynesian model is also successful in matching the standard deviation of in-

�ation (1:93% vs. 1:79% in the data) and consumption growth (2:87% vs. 2:91% in the

data). For all bond yields,MM;CS generates slightly more volatility than seen in the data,

but the model-implied standard deviations are all within the 95% con�dence bands for the

sample moments. For the labor supply, the standard deviation is 2:53%, which is slightly

larger than the empirical standard deviation of 1:72% and its upper 95% con�dence bound of

2:02%. Subject to this minor quali�cation,MM;CS is also able to explain the unconditional

variability in the data.

5.3 Bond Return Predictability

We next explore ifMM;CS can reproduce the observed degree of return predictability in US

bond yields by matching the empirical pattern of the Campbell-Shiller loadings. Figure 2

plots these loadings in the sample along with their bootstrapped 95% con�dence bands. The

corresponding model-implied loadings are computed in closed form using the population

moments of MM;CS. The very encouraging �nding is that MM;CS generates Campbell-

Shiller loadings that are negative and decreasing with maturity, and hence tract the empirical

loadings remarkably well inside their 95% con�dence bands. This shows that our New

Keynesian model satis�es the �rst requirement for a correct speci�cation of term premia.

Figure 2 also reveals that removing the impact of in�ation on volatility by imposing


� = 0 has a dramatic e¤ect in the model. For this restricted version of MM;CS, the

Campbell-Shiller loadings are positive and increase with maturity. That is, the complete

opposite pattern compared to the full model and the data. This shows that our extension

with in�ation a¤ecting volatility through 
� is essential forMM;CS to reproduce the desired

degree of return predictability in US bond yields.

5.4 Risk-Adjusted Campbell-Shiller Regressions

The second requirement for a correct speci�cation of term premia is that risk-adjusted his-

torical bond yields satisfy the expectations hypothesis. Dai and Singleton (2002) show that

this corresponds to testing whether the slope coe¢ cient �Adjk is equal to one in a version of
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the Campbell-Shiller regression, where term premia are subtracted from long-term yields as

follows

r
(k�m)
t+m � r(k)t �

�gTP (k�m)t+m �gTP (k�m)t

�
+

m

k �mTP
fwd;(k�m)
t (18)

= �Adjk + �Adjk

m

k �m

�
r
(k)
t � r(m)t

�
+ uAdjt+m;k:

Here,gTP (k)t = r
(k)
t � 1

k

Xk�1

i=0
Et [rt+i] is another commonly used de�nition of term premium,

that only di¤ers from TP
(k)
t by including a small convexity term. The variable TP fwd;(k)t =

ft;k � Et [rt+k] is the term premium in the forward rate ft;k � � log (Bt;k+1=Bt;k) and uAdjt+m;k

is an error term.

Figure 3 uses term premia fromMM;CS to compute the risk-adjusted Campbell-Shiller

loadings �Adjk and their 95% con�dence bands on the historical sample of bond yields from

1961 Q2 to 2016 Q2. Very encouragingly, we �nd that all these loadings are close to one,

and that the 95% con�dence bands for these estimates always contain the desired value of

one. Thus, we are no longer able to reject the expectations hypothesis for historical bond

yields once they are risk-adjusted. This shows that term premia from our New Keynesian

model are not rejected by data, and hence also passes the second requirement for a correct

speci�cation of term premia.

Figure 3 also shows that omitting the e¤ect of in�ation on volatility by letting 
� = 0 has

a strong e¤ect on �Adjk . For this restricted version of MM;CS, the risk-adjusted Campbell-

Shiller loadings are negative beyond the two year maturity and strongly decreasing with

maturity. Thus, we clearly violate the expectations hypothesis for risk-adjusted long-term

bond yields when 
� = 0.17 This shows that the proposed extension of �t in (12), where

volatility depends on in�ation, is essential for the New Keynesian model to generate plausible

term premia dynamics and explain the observed deviations from the expectations hypothesis.

5.5 Nominal Term Premia

The ten-year term premium implied byMM;CS is shown in Figure 4, where the shaded bars

denote NBER recessions. The �gure reveals that our New Keynesian model generates the

17Unreported results show that �Adjk is signi�cantly di¤erent from one at the 5% level for maturities
exceeding four years.
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same overall pattern for nominal term premia as observed in the �exible �ve-factor model of

Adrian et al. (2013), which is a standard reduced-form DTSM without any economic struc-

ture imposed on the stochastic discount factor. The correlation between the two measures of

term premia is 77%, with the similarities being particularly strong after the mid 1980s. Most

of the observed di¤erences between the two models appear around NBER recessions, where

the New Keynesian model tends to generate more counter-cyclical variation in term premia

than seen in the reduced-form model of Adrian et al. (2013). This di¤erence is also evident

from simple summary statistics, asMM;CS implies a ten-year nominal term premium with a

mean of 184 basis points and a standard deviation of 179 basis points, while the correspond-

ing �gures are 168 and 123 basis points, respectively, for the reduced-form model of Adrian

et al. (2013).

5.6 Understanding the Key Mechanisms in the Model

At this point, we have shown that the proposed model i) explains historical bond yields,

ii) matches unconditional properties of yields, and iii) passes the two requirements for a

correct speci�cation of term premia. These aspects of the data are also matched by reduced-

form DTSMs, but this class of models o¤ers little insights into the economic mechanisms

that determine bond yields and especially term premia dynamics. The New Keynesian we

propose in this paper provides such a structural explanation, and this section analyzes some

of the key mechanisms in MM;CS that drive term premia. Our discussion is structured

around Table 4, which shows how unconditional moments and Campbell-Shiller loadings

(both ordinary and risk-adjusted) are a¤ected when omitting one of the six shocks in the

model.

First, permanent productivity shocks have a large e¤ect in the model. This is seen clearly

from the unconditional means in Table 4, where omitting variation in �z;t (i.e. ��z = 0)

generates a strong steeping of the yield curve. For instance, the three-month bond yield falls

from 4:89% to �0:27% and the ten-year bond yield increases from 6:25% to 20:90%. That

is, a permanent productivity shock generates a negative term premium. To understand why,

observe from Figure 5 that a positive shock to �z;t increases consumption, reduces labor,

and raises in�ation. We therefore see a fall in the stochastic discount factor Mt;t+1 that

coincides with a fall in the long-term nominal bond price B(40)t . As shown in Rudebusch and
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Swanson (2012), such a positive comovement between Mt;t+1 and B
(40)
t generates a negative

term premium, and this explains why permanent productivity shocks help to �atten the

yield curve. Table 4 also shows that permanent productivity shocks account for much of the

variation in medium- and long-term bond yields. For instance, the standard deviation in

r
(40)
t falls from 3:61% to 1:86% when letting ��z = 0. We also �nd that ordinary Campbell-

Shiller loadings increase without permanent technology shocks, for instance from �1:3 to
�0:7 for r(40)t . This shows that permanent technology shocks also play an important role

in generating bond return predictability in MM;CS. The risk-adjusted Campbell-Shiller

loadings are also strongly a¤ected when ��z = 0, as all estimates of �Adjk are negative,

although not signi�cantly di¤erent from one due to the wide con�dence bands.

Second, the �fth column in Table 4 shows that we get a strongly inverted yield curve

without demand shocks (i.e. �d = 0), meaning that these shocks help to generate an upward

sloping yield curve in MM;CS. In contrast, demand shocks typically generate a downward

sloping yield curve in the New Keynesian model (see, for instance, Nakata and Tanaka

(2016)). To understand this implication of MM;CS, observe that a positive demand shock

increases consumption, reduces labor, and raises in�ation in Figure 6. Despite these re-

sponses, we see a temporary increase in the stochastic discount factor, because dt also scales

the constant u0 in the utility function. This generates a large increase in the value function

Vt+1, which translates into a positive spike in the stochastic discount factor through the term�
Et
�
V 1��t+1

�� �
1�� =V �t+1 in (13). Thus, we have a negative comovement betweenMt;t+1 and the

bond price B(40)t , implying that demand shocks carry a positive term premium inMM;CS.

Third, the �fth column in Table 4 also shows a large positive increase in ordinary

Campbell-Shiller loadings when imposing �d = 0. For instance, �40 increases from �1:3
to 0:2 when omitting demand shocks. We do not observe a similar positive increase in the

ordinary Campbell-Shiller loadings when abstracting from any of the other shocks, implying

that demand shocks are the main driver behind bond return predictability in MM;CS. To

further clarify which feature in MM;CS that helps to generate bond return predictability,

consider once again the impulse response functions following a positive demand shock in

Figure 6. Here, we �nd a fall in the expected long-term bond yield, i.e. Et
h
r
(36)
t+4

i
� r(40)t ,

and a steeping of the yield spread r(40)t � r(4)t , as required to get a negative Campbell-Shiller
loading. Figure 6 also shows that this steeping of the yield spread is absent if we momentarily

impose 
� = 0 to get the standard volatility speci�cation. That is, we only experience the
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required increase in long-term bond yields because higher in�ation generates higher volatility

inMM;CS. Note also that the same volatility response from in�ation generates the negative

comovement between Et
h
r
(36)
t+4

i
� r(40)t and r(40)t � r(4)t in Figure 5 following a permanent

productivity shock. Taken together, this shows that the proposed extension in (12), where

�t depends on in�ation through 
�, constitutes a new important channel for generating bond

return predictability in the New Keynesian model.

Finally, the second column in Table 4 reveals that the e¤ects of not including exogenous

shocks to volatility (i.e. �� = 0) are fairly small, as all the unconditional moments are

nearly identical to those reported for the full model. Hence, the main e¤ects of stochastic

volatility inMM;CS come from the response of �t following a productivity shock, a demand

shock, or other �level�shocks as captured by 
�. This property of our New Keynesian model

is thus consistent with the reduced-form evidence in Ludvigson et al. (2019), showing that

uncertainty reacts endogenously to level shocks and a¤ects the economy by altering the

responses of level shocks.

5.7 Decomposing Conditional Heteroskedasticity

It is well-known that the nonlinear structure of the New Keynesian model generates time-

variation in the conditional second moments even with homoskedastic shocks (see, for in-

stance, Rudebusch and Swanson (2012)). InMM;CS, this endogenous source of conditional

heteroskedasticity is captured by the nonlinearities in the g-function in (14). But we also

allow for stochastic volatility in the states through �t, and this generates an additional

source of conditional heteroskedasticity. Given the importance of time-varying volatility

for generating bond return predictability and plausible term premia dynamics in general,

it is informative to examine how much of the conditional heteroskedasticity in MM;CS is

endogenously generated and how much can be assigned to the process for �t.

To address this question, let �yobs;t denote the conditional standard deviation of yobst+1
given xt. Based on the pruned third-order perturbation approximation, we then use the

results in Andreasen et al. (2018) to compute �yobs;t in closed form at a given state. The �rst

column in Table 5 reports the standard deviation of �yobs;t in a simulated sample. Imposing


� = 0 in MM;CS reduces the variability in the conditional standard deviations by 40%

to 50% for �ct and all bond yields, while we see smaller changes for the labor supply and
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in�ation. The e¤ects of also imposing �� = 0 (such that �t = �ss) are much smaller, with

the largest change appearing for the three-month yield that decreases from �49% to �60%
compared toMM;CS with only 
� = 0.

We draw two conclusions from these simulations. First, the new mechanism we propose

by introducing 
� in (12) accounts for 40% to 50% of the conditional heteroskedasticity in

�ct and bond yields. In contrast, the e¤ects of the traditional exogenous volatility shocks via

��"�;t+1 are much smaller inMM;CS. Second, between 40% to 60% of the conditional het-

eroskedasticity in �ct and bond yields remain endogenously generated in the New Keynesian

model even when introducing stochastic volatility.

6 Robustness Analysis

This section examines the robustness of our main results in Section 5. We �rst consider

the e¤ects of shrinkage in Section 6.1, while the New Keynesian model is re-estimated with


� = 0 in Section 6.2 and u0 = 0 in Section 6.3. Section 6.4 �nally presents reduced-form

evidence that supports a volatility response from in�ation as captured by 
� > 0.
18

6.1 The E¤ects of Shrinkage

To assess the impact of shrinkage, we �rst re-estimate the New Keynesian model when only

shrinking the QML estimates to the �rst and second unconditional moments of yobst and not

to the Campbell-Shiller loadings. This version of the New Keynesian model is denotedMM .

We �nd that this modi�cation has a small e¤ect on the estimated structural parameters

in Table 1, the model �t in Table 2, and the unconditional means in Table 3. For the

unconditional standard deviations, MM provides a slightly closer �t to the data with less

variability in labor and most bond yields when compared to MM;CS. Table 6 shows that

MM also generates bond return predictability with Campbell-Shiller loadings close to �0:7,
although these loadings are somewhat lower (in absolute terms) than inMM;CS and the data.

On the other hand,MM implies risk-adjusted Campbell-Shiller loadings that are even closer

to the desired value of one than inMM;CS. Thus, our New Keynesian model remains able to

18In the online appendix, we further show that our results in Section 5 are robust to i) ending the estimation
in 2007 Q4, ii) doubling the standard deviations for the measurement errors, iii) decreasing � to �80, and
iiii) increasing the degree of shrinkage by letting � = T � 10 in (17).
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generate bond return predictability and explain deviations from the expectations hypothesis,

even when omitting ordinary Campbell-Shiller loadings from the shrinkage moments.

Another possibility is to abstract from any shrinkage and simply use QML for the esti-

mation. We refer to this version of the New Keynesian model as M. Table 1 shows that

this modi�cation results in somewhat larger changes in the estimated structural parameters.

As expected, we also �nd that these estimates give a closer in-sample �t, with M having

smaller measurement errors for nearly all series when compared to MM;CS and MM (see

Table 2). However, an important limitation of not applying shrinkage is shown in Table 3,

asM generates too high bond yields. Their unconditional mean exceeds 8%, which is well

outside the wide 95% con�dence bands for the empirical level of the US yield curve. Another

shortcoming of M is the elevated level of the standard deviations in labor and most bond

yields, which typically also exceed their upper 95% con�dence bounds. Thus, the improved

in-sample �t of the New Keynesian model when estimated without shrinkage comes at the

cost of distorting the �t to several unconditional properties of the model, and this seems

highly undesirable.

6.2 The Volatility Speci�cation

The novel feature of our New Keynesian model is the response in volatility to changes

in in�ation. This link is captured by 
�, which generates bond return predictability and

explains deviations from the expectations hypothesis, as shown above. We next re-estimate

the New Keynesian model with 
� = 0 to explore whether the model is able to generate bond

predictability and plausible term premia dynamics without this novel link between volatility

and in�ation. This restricted version of the New Keynesian model is denotedMM;CS

�=0

when

estimated with the full degree of shrinkage.

Table 1 shows that imposing 
� = 0 has notable e¤ects on the estimated structural

parameters, with � increasing from 0:967 to 0:985, �� falling from 6:93 to 3:86, and higher

persistence in several shocks (�z;t; nt, and at) than seen inMM;CS. The in-sample �t worsens

in general when imposing 
� = 0, as we �nd larger measurement errors for labor, consump-

tion growth, and all bond yields according to Table 2. The unconditional means and the

ordinary Campbell-Shiller loadings in Table 6 remain well matched with 
� = 0, but Table

3 also shows that the variability in labor and long-term bond yields are now too high. For
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instance, the standard deviation in labor is 5:05% vs. 1:72% in the data, and the standard

deviation in the ten-year bond yield is 4:08%, which exceeds the corresponding sample mo-

ment of 2:70% and its 95% upper con�dence bound of 3:76%. Table 6 also shows that all

risk-adjusted Campbell-Shiller loadings for MM;CS

�=0

are negative and statistically di¤erent

from one at the 5% level. Thus, the restricted model MM;CS

�=0

cannot explain the observed

deviations from the expectations hypothesis and is therefore unable to satisfy the second

requirement for a correct speci�cation of term premia.

It is also informative to estimate this restricted version of the New Keynesian model

without shrinking towards the ordinary Campbell-Shiller loadings. This version of the New

Keynesian model MM

�=0

gives clearly a better in-sample �t than MM;CS

�=0

, and it matches

both the level and variability of bond yields, although the standard deviation in labor remains

too high. Importantly,MM

�=0

does not match the ordinary Campbell-Shiller loadings, which

are positive and increasing with maturity, as shown in Table 6. At the ten-year maturity,

we even have that MM

�=0

reproduces the expectations hypothesis (�40 � 1:0) and hence

does not generate any bond return predictability. Another sign of misspeci�cation is seen in

the risk-adjusted Campbell-Shiller loadings forMM

�=0

, which are negative and statistically

di¤erent from one at the 5% level.

Thus, when 
� = 0, the New Keynesian model struggles to match various unconditional

properties of the data and is unable to explain the historical deviations from the expectations

hypothesis, i.e. pass the second requirement for a correct speci�cation of term premia.

6.3 The Standard Formulation of Recursive Preferences

We have so far used the �exible formulation of recursive preferences in Andreasen and Jør-

gensen (forthcoming) by including the constant u0 in the utility function to disentangle the

timing attitude from RRA. We next impose u0 = 0 to consider the standard formulation of

recursive preference with a tight link between the timing attitude and RRA. This restricted

version of the New Keynesian model is denotedMM;CS
u0=0

when estimated with the full degree

of shrinkage.

Unreported results show that the �t of this restricted model improves for lower values

of �, and we therefore let � = �60 for comparability with the unrestricted modelMM;CS.

Table 1 shows that imposing u0 = 0 has a very small e¤ect on the estimated structural
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parameters, although we �nd lower persistence in the labor supply shocks nt and smaller

demand shocks dt when compared toMM;CS. However, risk aversion is substantially higher

when u0 = 0 with RRA = 217, whereas it is only 10 in all the other versions of the model.

Table 2 shows that the in-sample �t as measured by log-likelihood function is una¤ected

by imposing u0 = 0, whereas the model�s ability to match the shrinkage moments improves

slightly from �1:9 in MM;CS to �1:8 in MM;CS
u0=0

. This improvement is mainly due to a

lower standard deviation for the labor supply of 1:72%, which now perfectly matches the

corresponding sample moment (see Table 3). We further observe from Table 6 thatMM;CS
u0=0

generates similar ordinary Campbell-Shiller loadings as in MM;CS and explains historical

deviations from the expectations hypothesis with �Adjk close to one.

We draw two conclusions from these results. First, restricting RRA to 10 is accompanied

by a small reduction in model�s ability to match the data when using the recursive preferences

of Andreasen and Jørgensen (forthcoming). Second, the New Keynesian model is also able

to match the data with the standard formulation of recursive preferences, provided one is

willing to accept a high RRA �perhaps to proxy for model uncertainty or omitted household

heterogeneity as mentioned in Rudebusch and Swanson (2012).

6.4 Reduced-Form Evidence of In�ation Induced Volatility

All the structural estimates of 
� in Table 1 are highly signi�cant, showing that a positive

relationship between volatility and in�ation helps the New Keynesian model match postwar

US data. To provide some external validation for this relationship, we next use the monthly

macro uncertainty index of Jurado et al. (2015) ending in April 2015 to directly estimate

(12) by ordinary least squares (OLS).

The left part of Table 7 follows the speci�cation in (12) closely and regresses �t+1 on a

constant, �t, and CPI in�ation. The residuals display evidence of auto-correlation, and the

standard errors are therefore computed as in Newey and West (1987) using a bandwidth

of six lags. For the full sample, we �nd that 
̂� is positive and signi�cant at the 5% level.

Restricting the sample to start in 1990 does not alter this �nding, as 
̂� remains positive and

has a p-value of 5:11% for the null hypothesis of 
� = 0.
19 Thus, the positive relationship

19The volatility measure in Jurado et al. (2015) has a di¤erent scale compared to �t in the New Keynesian
model, implying that the magnitude of the reduced-form estimates of 
� in Table 7 is not directly comparable
to the structural estimates in Table 1.
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between volatility and in�ation holds even when ignoring the 1970s and 1980s. The right

part of Table 7 introduces an additional lag of volatility compared to the previous regression

model to eliminate any auto-correlation in the residuals. For the full sample and the reduced

sample starting in 1990 we once again �nd that 
̂� is positive and signi�cant at the 5% level.

Thus, the clear message from these simple reduced-form regressions is that high current

in�ation coincides with high future volatility, as also implied by our structural estimates in

Table 1.

7 Additional Model Implications

This section studies additional asset pricing implications ofMM;CS and relates our �ndings to

the existing literature. We �rst show in Section 7.1 which structural shocks control the level,

slope, and curvature of the yield curve to o¤er an economic explanation behind variation in

the factors applied in many reduced-form DTSMs. A structural decomposition of nominal

term premia is carried out in Section 7.2 to examine the economic forces that determine risk

premia in the bond market. To provide further support for our New Keynesian model, we

then show that it also matches the level of real bond yields and the in�ation risk premium

in Section 7.3, and that it explains the high equity premium in Section 7.4.

7.1 Level, Slope, and Curvature

It well-known that nearly all cross-sectional variation in bond yields can be captured by three

factors representing level, slope, and curvature of the yield curve. Reduced-form DTSMs in

the tradition of Joslin et al. (2011) use these factors to elegantly explain the evolution in

the yield curve, but this modeling approach has the disadvantage of being silent about the

economic forces driving bond yields. In contrast, our New Keynesian model uses struc-

tural shocks to explain bond yields, and we are therefore able to study the economic forces

determining the level, slope, and curvature of the yield curve.

To address this question, Figure 7 shows the impulse response functions for the three

yield-factors to each of the structural shocks in MM;CS. The three yield-factors are here

de�ned as in Diebold et al. (2006), i.e. Lrt � (r
(40)
t + r

(8)
t + rt)=3 for level, Srt � r

(40)
t � rt for

slope, and Crt � 2r
(8)
t �rt�r

(40)
t for curvature. The top row of Figure 7 shows that permanent
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productivity shocks v�z ;t and shocks to the Taylor rule v�� ;t have the largest impact on the

level factor, but that demand shocks vd;t also play an important role. When regressing Lrt
on a constant, v�z ;t, and ��;t in a simulated sample of 100; 000 observations, the explained

variation is R2 = 82%. If we also add demand shocks to this regression, then R2 increases to

93%. Adding the three remaining shocks to the regression takes R2 to 97%, implying that

only 3% of the variation in Lrt is due to nonlinearities in the g-function in (15).
The middle row in Figure 7 shows that demand shocks vd;t are the key driver of the slope

factor, and that this e¤ect only arises from the positive link between in�ation and volatility

as captured by 
�. Thus, regressing Srt on a constant and vd;t in a simulated sample of
100; 000 observations gives an R2 of 67%. We also note that shocks to volatility �t have a

large impact on Srt , and adding �t to the regression takes R2 to 76%, whereas R2 = 80%

when including all six shocks. This implies that 20% of the variation in Syt is due to the
nonlinear terms xt 
 xt and xt 
 xt 
 xt in (15), meaning that the slope factor displays
stronger nonlinearities in comparison with the level factor.

For the curvature factor in the bottom row of Figure 7, we �nd that permanent pro-

ductivity shocks v�z ;t, demand shocks vd;t, and shocks to the Taylor rule v�� ;t are the most

important disturbances. Regressing Crt on a constant, v�z ;t, vd;t, and v�� ;t in a simulated sam-
ple of 100; 000 observations gives an R2 of 45%, which only increases to 54% when including

all six shocks. Thus, nonlinearities constitute a very large proportion of the variation in the

curvature factor (46%), and this may explain why it is hard to �nd good observable proxies

for Crt (see, for instance, Diebold et al. (2006))
A principal component analysis for the six bond yields in yobst on US data shows that Lrt

explains 97:31% of the variation in bond yields, while it is 2:42% for Srt and 0:22% for Crt .
These ratios are closely matched byMM;CS in a simulated sample of 100; 000 observations,

as the corresponding �gures are 97:36%, 2:42%, and 0:12% for Lrt , Srt , and Crt , respectively.
Thus, our structural model provides the same cross-sectional split of the variation in bond

yields as observed in the data, although each of the reduced-form factors is explained by

several structural shocks in the New Keynesian model.
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7.2 Decomposing Nominal Term Premium

One of the main advantages of a structural model is the economic interpretation attached to

each shock, meaning that the model o¤ers a deeper understanding of the mechanisms driving

term premia than available in more reduced-form models. Such an analysis is provided in

Figure 8, which uses (16) to perform a shock decomposition of nominal term premium.

This �gure shows that the ten-year nominal term premium is mainly driven by permanent

productivity shocks v�z ;t and demand shocks vd;t, which account for 41% and 49% of the

total variation in term premium, respectively. A careful inspection of Figure 8 reveals that

v�z ;t tends to be high and vd;t low just before the start of a recession. During recessions, we

generally see a fall in productivity v�z ;t but also a sequence of positive demand shocks that

increase the level of vd;t. This fall in v�z ;t has a negative e¤ect on term premium, whereas the

higher value of vd;t increases term premium. Figure 8 shows that the latter e¤ect generally

dominates, and this explains why term premium peaks at the end or immediately after

recessions in the US. The only exceptions are the two recessions in the early 1980s, where

we generally see the opposite pattern in v�z ;t and vd;t.

7.3 The Real Yield Curve and the In�ation Risk Premium

We next explore whether our New Keynesian model can match the level of real bond yields.

For the three-month real interest rate rrealt , we �nd that E
�
rrealt

�
= 0:89% inMM;CS, which

is in line with the estimates typically reported in the literature. For instance, the mean

of the real interest rate is 0:86% in Bansal and Yaron (2004) and 0:94% in Campbell and

Cochrane (1999). We also �nd that the level of real bond yields increases with maturity in

MM;CS, with the ten-year real bond yield rreal;(40)t having an unconditional mean of 2:14%.

This level is consistent with the results of Chernov and Mueller (2012), where E
h
r
real;(40)
t

i
is between 1:93% and 2:75%, depending on whether yields on Treasury in�ation protected

securities are included in the estimation of their reduced-form DTSM. Unreported results

show that this upward sloping real yield curve inMM;CS is generated by demand shocks, and

the mechanism is identical to the one described above for the nominal yield curve. The only

di¤erence compared to nominal yields is that real bond prices are not a¤ected by in�ation

and therefore display a weaker response to demand shocks than seen for nominal bond prices.

The negative covariance between the stochastic discount factor and any real bond price is
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therefore lower (in absolute terms) when compared with the corresponding nominal bond

price, and this explains why the real yield curve has a lower unconditional slope (125 basis

points) than the nominal yield curve (136 basis points) inMM;CS. These results ensure that

the real term premium TP real;(k)t inMM;CS is also increasing with maturity. At the ten-year

maturity, its unconditional mean is 159 basis points, while its standard deviation is 154 basis

points.

It is also informative to explore the model�s implication for the in�ation risk premium,

which is given by the di¤erence between the nominal and real term premium, i.e. TP (k)t �
TP

real;(k)
t . ForMM;CS we �nd that the in�ation risk premium is increasing with maturity,

having a mean of 25 basis points and a standard deviation of 25 basis points at the ten-year

maturity. Thus, most of the level and variation in the nominal term premium in our New

Keynesian model are due to real term premia, which is consistent with the predictions from

the reduced-form DTSMs in Chernov and Mueller (2012) and Abrahams et al. (2016).

7.4 The Equity Premium

Another way to assess the performance of the proposed model is to explore its ability to

explain the high equity premium in the US. We de�ne equity as a claim on D!
t , where Dt

is �rm dividends and ! accounts for leverage. This implies that the real equity price P eqt is

given by 1 = Et
h
M real
t;t+1e

reqt+1

i
, where er

eq
t+1 =

�
D!
t+1 + P

eq
t+1

�
=P eqt , M

real
t;t+1 = Mt;t+1�t+1, and

Dt = yt � wtlt � 1
2
� (�t=�ss � 1)2 yt � zt�kss. The equity premium E

�
reqt � rrealt�1

�
is 3:45%

inMM;CS without leverage (i.e. ! = 1), which is somewhat lower than the corresponding

empirical moment of about 6% (see, for instance, Bansal and Yaron (2004)). However,

allowing for a small degree of leverage with ! = 2 increases the equity premium to 6:09% in

MM;CS. Thus, the proposed model is also able to explain the high equity premium in the

US, although this moment was not included in the estimation.

8 Conclusion

This paper shows how to modify the New Keynesian model to generate bond return pre-

dictability from term premia dynamics that display the same satisfying properties as in

reduced-form DTSMs. The key innovation is to consider a new speci�cation for stochastic
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volatility, where high current in�ation increases future uncertainty. This extension enables

the New Keynesian model to generate bond predictability based on the yield spread, and it

ensures no return predictability in historical bond yields when adjusted for term premia. We

also show that the proposed model matches the upward sloping nominal yield curve, gen-

erates an upward sloping real yield curve, produces a positive and upward sloping in�ation

risk premium, and explains the equity premium.

An obvious extension of our analysis is to use the proposed model as a starting point

for understanding more recent bond return predictability results using macro variables, as

summarized in Bauer and Hamilton (2018). Another interesting extension is to enhance our

understanding of the economic forces that control the conditional volatility in bond yields

by also asking the New Keynesian model to match this aspect of the data. We leave these

and other extensions for future work.
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A QML with Shrinkage

A.1 The Asymptotic Distribution

The asymptotic analysis is carried out based on the assumption that any �ltering errors

caused by the adopted integration approximation in the CDKF are small and not of rele-

vance for the estimates. Given this assumption together with standard regularity conditions,

the QML estimator based on the CDKF is consistent (see Andreasen (2013)). Standard reg-

ularity conditions also ensure that GMM is consistent, meaning that the estimator in (17)

is consistent when T �!1. To derive the asymptotic distribution of �̂, note that it solves
the �rst-order condition

1

T

TX
t=1

�
�st

�
�̂
�
+ 2�G

�
�̂
�0
Wgt

�
�̂
��

= 0:

A mean-value expansion of st and gt around the true value �o gives

� 1
T

TX
t=1

�
st (�o) + ~Ht

�
�̂ � �o

��
+ 2�G

�
�̂
�0
W
�
g1:T (�o) + ~G

�
�̂ � �o

��
= 0:

Here, ~Ht is the Hessian of observation t related to the CDKF, where the tilde indicates that

each row of ~Ht is evaluated at a di¤erent mean being on the line segment between �o and

�̂. Similarly, ~G is the Jacobian related to the shrinkage moments, where each row of ~G is

evaluated at a di¤erent mean on the line segment between �o and �̂. Simple algebra then

implies

�̂ � �o =
 
� 1
T

TX
t=1

~Ht + 2�G
�
�̂
�0
W~G

!�1
1

T

TX
t=1

�
�st (�o)0+2�G

�
�̂
�0
Wgt (�o)

�
:

The result in Section 4.2 then follows when scaling this expression by
p
T and imposing the

necessary regularity conditions for extremum estimators (see, for instance, Hayashi (2000)).
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A.2 Monte Carlo Evidence

We use a simpli�ed version of our New Keynesian model for the Monte Carlo study to

keep it manageable. That is, we let lss = 0:34, �y = 0, and omit labor supply shocks

(�n = 0), shocks to the Taylor-rule
�
��� = 0

�
, and stationary technology shocks (�a = 0).

The New Keynesian model is solved to third order, where we use the same nine observa-

tions as contained in yobst (see Section 4.1). To study a demanding speci�cation, we let the

measurement errors have standard deviations of twice the size stated in Section 4.3, while

all remaining calibrated parameters are as outlined in Section 4.3. The simulation study

is carried out using 1; 000 samples with T = 250 observations (constructed using a burn-in

of 100 observations), with four observations reserved to initialize the CDKF for consistency

with the results in Table 1. Case I considers the scenario, where vt is simulated by letting

vt � NID (0;Rv) as used in the CDKF. Case II simulates vt with cross-correlation, auto-

correlation, and outliners, although the CDKF is implemented using vt � NID (0;Rv). The

simulation of vt is here done by �rst letting v"i;t = N (0; 1) + 1fu>0:90g � 5 + 1fu<0:10g � (�5)
for i = 1; 2; :::; 9 and t = 1; 2; :::; T to generate outliers, where u is uniformly distributed on

[0; 1]. For v"t =
�
v"1;t; v

"
2;t; :::; v

"
9;t

�0
, we then let vi;t = �vvi;t�1 +!

0
tv
"
t , where �v = 0:8 captures

auto-correlation and the column vector ! captures cross-correlation among bond yields of

the form corr
�
r
(n)
t ; r

(n�1)
t

�
= 0:99. We then normalize fvi;tgTt=1 to have zero mean and a

unit variance for i = 1; 2; :::; 9 in each simulated sample. To reduce the degree of simulation

noise, we apply the same seeds for the random number generator used to construct the 1; 000

simulated samples in Case I and II.

The results from the Monte Carlo study are summarized in Table A1. In Case I with

correctly speci�ed measurement errors in the CDKF, we �nd basically no biases in the QML

estimates without shrinkage (i.e. � = 0). The asymptotic normal distribution also appears

to be a reasonable approximation, as most rejection probabilities (Type I errors) for testing

the true null hypothesis (i.e. �̂j = �
o
j) at a 5% signi�cant level are close to the nominal size.

However, in Case II with misspeci�ed measurement errors in the CDKF, we observe notable

parameter biases and elevated Type I errors without shrinking the QML estimates, showing

that the asymptotic standard errors in this case display a negative bias. Within this setting,

shrinking (i.e. � = T ) is seen to be very bene�cial, as it reduces the overall level bias in

the parameters (0.049 vs. 0.059) and provides a notable improvement on the Type I errors

(7.4% vs. 39.0%).
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Table A1: Monte Carlo Study: Simulation Results

This table shows the performance of QML without shrinkage (� = 0) and with shrinkage (� = T ) towards
the �rst and second moments of yobst using 1; 000 simulated samples of length T = 250. Case I considers
the scenario, where vt is simulated by letting vt � NID (0;Rv) as used in the CDKF. Case II simulates
vt with cross-correlation, auto-correlation, and extreme outliners, although the CDKF is implemented using
the incorrect speci�cation vt � NID (0;Rv). Level bias refers to the mean of the estimate minus the
true value. The true standard error (SE) is calculated as the standard deviation of the estimates. The
Type I errors are calculated at a 5 percent signi�cance level. The overall mean absolute error (MAE)
for level bias is 1

n�

Pn�
j=1 jbiasj=�j j, where �j refers to the true value, while for Type I overall MAE is

1
n�

Pn�
j=1

��Type Ij � 5%��. Here, n� denotes the number of elements in �.
True Level bias True SE Type I (pct.)
value � = 0 � = T � = 0 � = T � = 0 � = T

Case I: correctly speci�ed vt
� 0.97 0.000 0.001 0.003 0.002 4.8 0.6

� 6.00 0.013 0.244 0.281 0.528 4.8 0.5

�� 6.00 0.012 0.085 0.158 0.275 5.9 3.3

��z 0.973 0.000 0.001 0.002 0.002 5.2 2.2

�d 0.972 0.000 0.000 0.001 0.002 5.9 1.8

�� 0.75 -0.005 0.025 0.023 0.042 12.3 26.4

��z � 100 0.034 0.000 -0.002 0.002 0.003 2.4 0.7

�d 0.052 0.000 0.000 0.001 0.001 4.5 2.7

�� 0.01 0.000 -0.001 0.001 0.003 7.7 19.2


� 4.00 0.093 0.318 0.393 0.827 9.2 7.3

�ss 1.021 0.000 0.000 0.001 0.000 13.0 0.5

Overall MAE - 0.005 0.031 - - 2.5 6.0

Case II: misspeci�ed vt
� 0.97 0.000 0.001 0.004 0.003 19.3 0.8

� 6.00 -0.772 0.020 0.635 0.592 65.8 0.9

�� 6.00 -0.035 0.148 0.280 0.296 36.1 2.3

��z 0.973 0.002 0.001 0.002 0.003 39.6 4.1

�d 0.972 0.001 0.001 0.002 0.002 29.8 2.7

�� 0.75 0.008 0.030 0.027 0.043 33.6 15.2

��z � 100 0.034 0.002 -0.001 0.004 0.003 34.1 0.8

�d 0.052 -0.001 0.000 0.001 0.001 46.6 3.2

�� 0.01 -0.004 -0.003 0.001 0.002 91.2 51.0


� 4.00 -0.125 0.302 0.651 0.913 45.1 3.7

�ss 1.021 -0.001 0.000 0.001 0.000 43.2 0.8

Overall MAE - 0.059 0.049 - - 39.0 7.4
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B Accuracy of Perturbation Approximation

We evaluate the accuracy of the third-order perturbation approximation by computing Euler-

equation errors along a simulated sample path of 2,000 observations, which we compute

using a pruned third-order perturbation approximation. The accuracy of this solution is

benchmarked to a standard �rst-order approximation and a fourth-order approximation using

the codes of Levintal (2017).20 Table B1 reports the mean absolute Euler-equation errors

(MAEs) for the six estimated versions of the New Keynesian model in Table 1. The results

are reported in unit-free terms, meaning that a MAE of 0.1 corresponds to a 10% violation

of the equilibrium equations. We clearly �nd that a third-order approximation improves the

accuracy of the linearized solution, both for the Euler-equations relating to the macro part of

the model and for the 40 Euler-equations describing bond prices. Considering a fourth order

approximation provides in general no improvement in accuracy compared to the adopted

third order solution.

20The �fth-order perturbation approximation does not converge given the large size of our model, and
hence is even less accurate than the fourth-order approximation.
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Table B1: The New Keynesian Model: Euler-Equation Errors

This table reports the mean absolute unit-free Euler-equation errors (MAEs) in a �rst-, third-, and fourth-
order perturbation approximation using a simulated sample path of 2,000 observations. For each estimated
version of the New Keynesian model, the simulated sample path is computed for a pruned third-order per-
turbation approximation. Conditional expectations in the Euler-equations are evaluated by Gauss-Hermite
quadratures using �ve points per shock, giving a total of 56 = 15; 625 points. The considered model parame-
ters are those reported in Table 1. The MAEs to the 9 equations describing the model without bond prices
are summarized under the label �Macro Part�, while the MAEs for the 40 equations describing all bond prices
are summarized under the label �Bond Prices�. The label �Total�refers to the MAEs for the entire model.

MM;CS MM M MM;CS

�=0

MM

�=0

MM;CS
u0=0

Macro Part:

1st order 6.27 7.33 11.18 2.23 1.91 5.93

3rd order 0.05 0.08 0.10 0.24 0.07 0.06

4th order 0.25 0.40 0.13 0.23 0.13 0.23

Bonds Prices:

1st order 26.52 30.99 45.93 9.10 7.90 25.26

3rd order 0.15 0.24 0.30 0.72 0.20 0.19

4th order 0.93 1.48 0.35 0.81 0.43 0.85

Total:

1st order 20.69 24.17 35.88 7.12 6.17 19.70

3rd order 0.12 0.19 0.24 0.57 0.16 0.15

4th order 0.73 1.16 0.28 0.64 0.34 0.67
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Figure 1: Model Fit
This �gure shows the �t ofMM;CS when evaluated at the posterior state estimates from the CDKF using
US data from 1961 Q2 to 2016 Q2.
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Figure 2: The Campbell-Shiller Loadings
This �gure shows the Campbell-Shiller regression loadings �k for m = 4 in US data from 1961 Q2 to 2016
Q2. The shaded area denotes the 95 percent con�dence interval for these estimates, computed with a block
bootstrap where the regressand and the regressor in (1) are sampled jointly in blocks of 10 observations
in 100,000 bootstrap samples. The model-implied Campbell-Shiller moments are computed in closed form
based on Andreasen et al. (2018).
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Figure 3: Risk-Adjusted Campbell-Shiller Loadings
The �gure shows the risk-adjusted Campbell-Shiller regression loadings �Adjk for m = 4 in US data from
1961 Q2 to 2016 Q2 when using the term premium fromMM;CS . The shaded area denotes the 95 percent
con�dence interval for these estimates, computed with a block bootstrap where the regressand and the
regressor in (18) are sampled jointly in blocks of 10 observations in 100,000 bootstrap samples.
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Figure 4: The Ten-year Nominal Term Premia
This �gure shows the ten-year nominal term premium in annualized basis points fromMM;CS and the model
by Adrian et al. (2013). The gray shaded bars denote NBER recessions.
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Figure 5: Impulse Response Functions: Permanent Productivity Shock
This �gure shows the e¤ects of a positive one-standard deviation shock to v�z;t computed at the ergodic
mean of the states using the results in Andreasen et al. (2018). Except for Mt;t+1, all impulse response
functions are scaled by 100, with consumption expressed in deviations from the balanced growth path.
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Figure 6: Impulse Response Functions: Preference Shock
This �gure shows the e¤ects of a positive one-standard deviation shock to vd;t computed at the ergodic mean
of the states using the results in Andreasen et al. (2018). Except for Mt;t+1, all impulse response functions
are scaled by 100, with consumption expressed in deviations from the balanced growth path.
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Figure 7: Impulse Response Functions for Standard Yield Curve Factors
This �gure shows the impulse response functions for the level, slope, and curvature factor of the yield curve
following a positive one-standard deviation disturbance to each of the structural shocks in MM;CS . The
impulse response functions are computed at the ergodic mean of the states using the results in Andreasen
et al. (2018).
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Figure 8: The Ten-year Nominal Term Premia: A Shock Decomposition
This �gure shows how each of the structural shocks inMM;CS contributes to the variation in the ten-year
nominal term premium. The percentage of the total variation in the nominal term premium explained by
each shock, denoted pct(�TPt), is computed based on the absolute variation in the series. The gray shaded
bars denote NBER recessions, and term premium is expressed in annualized basis points.
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Table 1: The New Keynesian Model: The Structural Parameters

Estimation results using data from 1961 Q2 to 2016 Q2, with asymptotic standard errors provided in paren-
thesis. The �rst four observations are used to initialize the CDKF. When shrinkage is applied in the estima-
tion, as denoted by the superscriptsM and CS on the model objectM, an equal weighting between moments
related to the three macro variables (i.e. log lt, �ct, and �t) and moments related to the yield curve (i.e. six
bond yields and six moments to capture the three Campbell-Shiller loadings) is targeted by correcting for
the number of included moments. Hence, for MM;CS , MM;CS


�=0
, and MM;CS

u0=0
, the weights assigned to each

of the macro moments are upscaled by four, whereas they are upscaled by two forMM . No standard error
is provided for �y in the case ofM

M;CS
u0=0

, because this parameter is at its lower bound. The timing premium
is evaluated at the steady state and computed as in Andreasen and Jørgensen (forthcoming).

Full model Reduced model
MM;CS MM M MM;CS


�=0
MM


�=0
MM;CS

u0=0

lss 0:340
(0:001)

0:340
(0:001)

0:315
(0:013)

0:340
(0:001)

0:340
(0:001)

0:34
(0:001)

� 0:967
(0:007)

0:966
(0:004)

0:975
(0:008)

0:985
(0:002)

0:992
(0:004)

0:967
(0:006)

� 6:672
(1:168)

7:288
(0:607)

11:732
(0:819)

6:422
(0:050)

7:903
(0:021)

6:650
(0:961)

�� 6:926
(0:729)

7:190
(0:633)

5:187
(0:384)

3:856
(0:121)

4:620
(0:015)

7:923
(0:64)

�y 0:025
(0:088)

0:097
(0:053)

0:194
(0:062)

0:081
(0:069)

0:099
(0:009)

0:000
�

��z 0:973
(0:004)

0:962
(0:004)

0:973
(0:003)

0:988
(0:001)

0:972
(0:003)

0:971
(0:005)

�n 0:985
(0:015)

0:982
(0:015)

0:990
(0:004)

0:997
(0:005)

0:995
(0:003)

0:96
(0:009)

�d 0:972
(0:004)

0:962
(0:003)

0:975
(0:004)

0:976
(0:002)

0:971
(0:002)

0:975
(0:006)

��� 0:987
(0:01)

0:974
(0:008)

0:917
(0:007)

0:911
(0:019)

0:900
(0:010)

0:986
(0:009)

�a 0:977
(0:011)

0:951
(0:006)

0:966
(0:003)

0:998
(0:006)

0:995
(0:005)

0:957
(0:013)

�� 0:724
(0:035)

0:722
(0:021)

0:624
(0:039)

0:864
(0:031)

0:911
(0:014)

0:715
(0:036)

�ss 1:021
(0:002)

1:021
(0:002)

1:030
(0:003)

1:026
(0:002)

1:022
(0:002)

1:019
(0:002)

��z � 100 0:034
(0:001)

0:040
(0:001)

0:022
(0:001)

0:019
(0:001)

0:020
(0:001)

0:034
(0:001)

�n 0:043
(0:007)

0:045
(0:007)

0:072
(0:006)

0:035
(0:009)

0:045
(0:007)

0:043
(0:008)

�d 0:052
(0:004)

0:055
(0:002)

0:052
(0:002)

0:045
(0:001)

0:046
(0:001)

0:045
(0:004)

��� 0:080
(0:044)

0:125
(0:017)

0:091
(0:012)

0:103
(0:03)

0:195
(0:039)

0:101
(0:052)

�a 0:004
(0:001)

0:004
(0:001)

0:011
(0:002)

0:004
(0:001)

0:004
(0:001)

0:004
(0:001)

�� 0:010
(0:005)

0:024
(0:005)

0:015
(0:003)

0:009
(0:003)

0:016
(0:004)

0:011
(0:005)


� 4:455
(0:475)

6:037
(1:313)

2:222
(0:361)

� � 4:861
(0:149)

Timing Premium 9% 8% 4% 10% 7% 9%
IES 0:15 0:14 0:09 0:16 0:13 0:15
RRA 10 10 10 10 10 217
u0 �3:75 �3:54 �4:54 �3:84 �3:32 0

50



Table 2: Goodness of Insample Fit

Panel A shows the standard deviations of the measurement errors computed using the posterior state es-
timates from the CDKF. Panel B shows a decomposition of the objective function L � LCDKF + QGMM ,
where LCDKF � 1

T

PT
t=1 Lt (�) and QGMM � ��g1:T (�)0Wg1:T (�).

Full model Reduced model
MM;CS MM M MM;CS


�=0
MM


�=0
MM;CS

u0=0

Panel A: Measurement errors
std (log lt) 7:8 7:3 3:5 10:0 7:2 7:6
std (�ct) 5:1 9:0 6:7 22:9 11:6 4:7
std (�t) 48:1 37:5 12:9 23:4 13:4 46:9
std (rt) 20:1 27:4 13:8 26:3 24:7 21:5

std
�
r
(4)
t

�
23:8 24:0 18:4 33:2 27:8 26:6

std
�
r
(12)
t

�
14:3 13:8 10:4 24:3 19:8 14:9

std
�
r
(20)
t

�
9:6 10:7 8:8 11:4 9:0 10:5

std
�
r
(28)
t

�
8:1 7:2 5:3 8:6 7:7 8:7

std
�
r
(40)
t

�
13:0 13:4 9:6 17:4 17:6 13:6

Panel B: Objective function
LCDKF 33:4 34:6 35:8 30:8 33:1 33:4
QGMM �1:9 �0:4 0:0 �4:6 �0:5 �1:8
L 31:5 34:2 35:8 26:2 32:6 31:6
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Table 3: Unconditional First and Second Moments

The data moments are for the US from 1961 Q2 to 2016 Q2 with 95% con�dence bands stated below. These
bands are computed using a block bootstrap with 100,000 bootstrap samples using blocks of 60 observations.
The model-implied moments are computed in closed form based on Andreasen et al. (2018). Except for
E [log lt], all means and standard deviations are stated in annualized percent.

Full model Reduced model
Data MM;CS MM M MM;CS


�=0
MM


�=0
MM;CS

u0=0

Means
log lt �1:08

[�1:09;�1:07]
�1:08 �1:08 �1:16 �1:08 �1:08 �1:08

�ct 1:94
[1:42;2:47]

1:96 1:96 1:95 1:94 1:94 1:95

�t 3:88
[2:00;5:77]

4:00 3:89 4:85 4:10 3:93 3:99

rt 4:76
[2:45;7:07]

4:89 4:88 8:28 4:70 4:87 4:92

r
(4)
t 5:24

[2:75;7:73]
5:10 5:10 8:36 5:03 5:07 5:12

r
(12)
t 5:64

[3:18;8:10]
5:55 5:55 8:51 5:66 5:52 5:54

r
(20)
t 5:92

[3:55;8:28]
5:85 5:86 8:57 6:02 5:86 5:84

r
(28)
t 6:13

[3:85;8:40]
6:06 6:09 8:59 6:16 6:13 6:05

r
(40)
t 6:35

[4:18;8:52]
6:25 6:33 8:59 6:03 6:42 6:28

Stds
log lt 1:72

[1:42;2:02]
2:53 2:29 5:05 5:05 4:59 1:72

�t 1:79
[1:55;2:04]

1:93 1:95 2:63 1:96 1:98 1:93

�ct 2:91
[1:54;4:27]

2:87 3:11 2:43 2:38 2:94 2:92

rt 3:17
[2:11;4:23]

3:53 3:57 4:27 3:18 3:62 3:46

r
(4)
t 3:30

[2:20;4:41]
3:49 3:33 4:20 3:25 3:48 3:43

r
(12)
t 3:14

[2:03;4:24]
3:57 3:29 4:17 3:49 3:29 3:54

r
(20)
t 2:97

[1:88;4:06]
3:64 3:33 4:14 3:71 3:18 3:62

r
(28)
t 2:84

[1:76;3:91]
3:66 3:30 4:09 3:88 3:08 3:65

r
(40)
t 2:70

[1:65;3:76]
3:61 3:18 3:95 4:08 2:92 3:59
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Table 4: Decomposing the E¤ects of the Structural Shocks

This table reports unconditional moments forMM;CS when all structural shocks are present in column (1),
and when each of the structural shocks are omitted in columns (2) to (7). The model-implied moments are
computed in closed form based on Andreasen et al. (2018). Except for E [log lt], all means and standard
deviations are stated in annualized percent.

(1) (2) (3) (4) (5) (6) (7)
Benchmark �� = 0 ��z = 0 �n = 0 �d = 0 ��� = 0 �a = 0

Means
log lt �1:08 �1:08 �1:08 �1:08 �1:08 �1:08 �1:08
�ct 1:96 1:96 1:94 1:96 1:96 1:96 1:96
�t 4:00 4:00 3:26 4:04 8:97 4:00 4:04
rt 4:89 4:89 �0:27 5:17 39:34 4:89 5:19

r
(4)
t 5:10 5:10 1:96 5:37 37:34 5:10 5:39

r
(12)
t 5:55 5:55 7:32 5:80 32:47 5:55 5:80

r
(20)
t 5:85 5:85 11:93 6:09 28:21 5:85 6:08

r
(28)
t 6:06 6:06 15:91 6:28 24:48 6:06 6:27

r
(40)
t 6:25 6:25 20:90 6:44 19:72 6:25 6:42

Stds
log lt 2:53 2:53 2:52 1:30 2:47 2:52 2:29
�t 1:93 1:93 1:78 1:58 1:96 1:92 1:47
�ct 2:87 2:87 3:19 2:85 1:29 0:63 2:84
rt 3:53 3:50 2:68 3:49 5:20 2:44 3:46

r
(4)
t 3:49 3:48 2:42 3:46 4:95 2:45 3:43

r
(12)
t 3:57 3:57 2:07 3:55 4:31 2:70 3:53

r
(20)
t 3:64 3:64 1:94 3:62 3:79 2:89 3:60

r
(28)
t 3:66 3:66 1:89 3:64 3:39 2:99 3:63

r
(40)
t 3:61 3:61 1:86 3:59 2:95 3:03 3:58

CS loadings
�12 �1:05 �1:23 �0:66 �1:12 0:14 �1:27 �1:13
�20 �1:22 �1:33 �0:77 �1:27 0:17 �1:50 �1:30
�28 �1:28 �1:37 �0:77 �1:34 0:21 �1:65 �1:37
�40 �1:29 �1:36 �0:74 �1:34 0:26 �1:83 �1:38

Adjusted
CS loadings
�Adj12 0:53

[�0:76;1:83]
0:50

[�0:83;1:83]
�1:27

[�3:02;0:48]
0:98

[�0:39;2:35]
�0:35

[�1:67;0:97]
�0:34

[�1:63;0:95]
0:39

[�0:75;1:53]

�Adj20 0:50
[�0:87;1:86]

0:62
[�0:91;2:16]

�1:10
[�3:38;1:19]

1:20
[�0:28;2:68]

�0:81
[�2:38;0:75]

�0:44
[�1:84;0:96]

0:41
[�0:80;1:63]

�Adj28 0:51
[�0:96;1:97]

0:73
[�1:02;2:47]

�1:23
[�3:88;1:42]

1:45
[�0:16;3:06]

�1:11
[�2:91;0:70]

�0:48
[�1:92;0:96]

0:47
[�0:90;1:84]

�Adj40 0:53
[�1:21;2:27]

0:89
[�1:28;3:05]

�1:66
[�4:67;1:36]

1:74
[�0:25;3:74]

�1:37
[�3:55;0:81]

�0:50
[�2:06;1:07]

0:55
[�1:21;2:31]
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Table 5: Decomposing Conditional Standard Deviations

This table reports the standard deviation of �yobs;t in a simulated sample of 10,000 observations, where �yobs;t
denotes the conditional standard deviation of yobst+1 given xt. The quarterly conditional standard deviations
are not annualized. Column (1) reports std

�
�yobs;t

�
in basis points for MM;CS . Column (2) reports the

percentage change in std
�
�yobs;t

�
compared column (1) when imposing 
� = 0 in MM;CS . Column (3)

reports the percentage change in std
�
�yobs;t

�
compared to column (1) when imposing 
� = 0 and �� = 0 in

MM;CS .

(1) (2) (3)
std
�
�yobs;t

�
Pct change in std

�
�yobs;t

�
Pct change in std

�
�yobs;t

�
in bps when 
� = 0 when 
� = 0 and �� = 0

lt 0.44 7% -1%
�ct 0.68 -43% -47%
�t 1.48 -6% -8%
rt 2.68 -49% -60%
r
(4)
t 1.68 -38% -41%
r
(12)
t 1.36 -42% -41%
r
(20)
t 1.21 -46% -46%
r
(28)
t 1.04 -48% -48%
r
(40)
t 0.82 -48% -48%
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Table 6: Ordinary and Risk-Adjusted Campbell-Shiller Loadings

The �rst part of the table shows the Campbell-Shiller regression loadings �k for m = 4. The moments in
the data are computed from 1961 Q2 to 2016 Q2, with the 95 percent con�dence interval (shown below the
estimate) computed using a block bootstrap, where the regressand and the regressor in (1) are sampled jointly
in blocks of 10 observations in 100,000 bootstrap samples. The model-implied Campbell-Shiller moments
are computed in closed form based on Andreasen et al. (2018). The second part of the table shows the
risk-adjusted Campbell-Shiller regression loadings �Adjk for m = 4 computed using term premia from the
indicated version of the New Keynesian model and US bond yields from 1961 Q2 to 2016 Q2. The 95 percent
con�dence interval is reported below the point estimate of �Adjk and computed using a block bootstrap, where
the regressand and the regressor in (18) are sampled jointly in blocks of 10 observations in 100,000 bootstrap
samples.

Full model Reduced model
Data MM;CS MM M MM;CS


�=0
MM


�=0
MM;CS

u0=0

CS loadings
�12 �1:03

[�2:27;0:20]
�1:05 �0:59 �0:20 �0:61 0:39 �1:17

�20 �1:55
[�2:94;�0:16]

�1:22 �0:71 �0:32 �0:82 0:53 �1:32

�28 �1:96
[�3:47;�0:46]

�1:28 �0:74 �0:32 �0:99 0:70 �1:36

�40 �2:44
[�4:14;�0:74]

�1:29 �0:69 �0:25 �1:19 0:96 �1:32

Adjusted
CS loadings
�Adj12 - 0:53

[�0:76;1:83]
1:02

[�0:28;2:33]
0:12

[�1:25;1:49]
�0:36

[�1:69;0:98]
�0:27

[�1:76;1:22]
0:84

[�0:37;2:04]

�Adj20 - 0:50
[�0:87;1:86]

0:99
[�0:30;2:28]

0:18
[�1:25;1:60]

�0:93
[�2:27;0:42]

�0:82
[�2:42;0:79]

0:83
[�0:43;2:09]

�Adj28 - 0:51
[�0:96;1:97]

1:01
[�0:32;2:34]

0:32
[�1:10;1:74]

�1:25
[�2:53;0:03]

�1:18
[�2:82;0:46]

0:85
[�0:53;2:23]

�Adj40 - 0:53
[�1:21;2:27]

1:02
[�0:52;2:55]

0:59
[�0:86;2:04]

�1:49
[�2:69;�0:28]

�1:50
[�3:23;0:22]

0:85
[�0:86;2:56]
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Table 7: Reduced-Form Volatility Regressions

Model I estimates �t+1 = �+ �1�t + 
��t + "t+1 using OLS and Newey-West standard errors implemented
with 6 lags. Model II estimates �t+1 = �+�1�t+�2�t�1+
��t+"t+1 using OLS and White�s heteroskedastic-
consistent standard errors. The standard errors are reported in parenthesis. For both models, uncertainty
�t is measured by the monthly macro uncertainty index of Jurado et al. (2015) one month ahead, and
in�ation �t is measured monthly by the yearly change in all items for the consumer price index for all urban
consumers, divided by 1200. Signi�cance at the 10 and 5 percent level is denoted by * and **, respectively.

Model I Model II
� �1 
� � �1 �2 
�

1961:7 to 2015:4 0:014
(0:011)

0:972��
(0:020)

1:27��
(0:604)

0:016��
(0:005)

�0:619��
(0:053)

1:591��
(0:058)

0:752��
(0:258)

1990:1 to 2015:4 �0:003
(0:019)

0:991��
(0:027)

4:203�
(2:157)

0:011
(0:007)

�0:688
(0:077)

1:668
(0:085)

1:148��
(0:570)
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