
Vocable Code is both a work of ‘software art’
(software as artwork, not software to make an artwork)
and a ‘codework’ (where the source code and critical
writing operate together) produced to embody “queer
code”. Collective statements and voices complete the
phrase ‘Queer is…’ and together make a computational
and poetic composition for two screens: on one of
these, texts and voices are repeated and disrupted
by mathematical chaos, together exploring the
performativity of code and language; on the other, is
a mix of a computer programming syntax and human
language. In this sense queer code can be understood
as both an object and subject of study that intervenes in
the world’s ‘becoming’ and how material bodies are
produced via human and nonhuman practices.
The purpose is to exemplify the speech-like qualities
of a computer program, and to explore the constant
regeneration and re-running of code as a way to rethink
computational logic from a posthuman position.

A lecture-performance in six parts
Winnie Soon & Geoff Cox

VOCABLE CODE (13082018)

3// Part 1. Speech-like Qualities of Code

Performer #1:

· Omit { } , ; () ‘ ’

· Pronounce [] . =

· Pause deliberately for non-pronounced symbols

let whatisQueer;

let queerRights = [];

let speak;

let queers = [];

let voices = [];

function preload() {

 withPride = loadFont(

 ‘inclusive/Gilbert_TypeWithPride.otf’

);

 whatisQueer = loadJSON(

 ‘inclusive/voices.json’

);

}

Performer #2:

‘If program code is like speech inasmuch as it does what
it says, then it can also be said to be like poetry inasmuch
as it involves both written and spoken forms.’
(Cox, 2013, p.17)

‘Speech grounds language in the voice, the orientational
metaphor grounds semantics in the body. It follows that
computer software cannot have access to systems of
meaning without at least some kind of reference to bodily
relationships [...] Programmers bring bodily meaning to
their work by applying models of human perception, and
by trying to account for the ways that other social bodies
are drawn into the process of meaning production.’
(Cox, 2013, p.26)

5// Part 1. Speech-like Qualities of Code

Performer #1:

· Make a deliberate pause for non-pronounced () , { } ;

function setup() {

 createCanvas(

 windowWidth,

 windowHeight

);

 background(2.34387);

 makeVisible();

}

There is more to coding than simply the demonstration
of formal logic, as if everything could be reduced to
input and output. Of course computers don’t really
speak but follow prescribed rules of execution, tasks,
and actions. But, nevertheless, code can be broadly
considered speech as it does what it says, and moreover
does what it says at the moment of saying it. Any
simple opposition of human and machines would be an
oversimplification. Humans are not preprogrammed to
execute their preprogrammed instructions and scripts,
or ‘input-output machines’ as Dominique Laporte
suggests in A History of Shit (2002).

Performer #2:

· Pronounce all punctuation

7// Part 1. Speech-like Qualities of Code

Performer #2:

· Pronounce all punctuation except , “ ” { } ;

function SpeakingCode(

 iam,

 makingStatements

) {

 let getVoice = “inclusive/voices/”

 + iam + makingStatements + “.wav”;

 speak = loadSound(

 getVoice,

 speakingNow

);

}

function speakingNow() {

 speak.play();

}

// Part 2. Number Zero 9

Performer #1:

In mathematics, zero is an important number and not
to be dismissed as nothing. If we add a zero to the right
side of any number, it is multiplied by ten. In Indian
mathematics, the zero symbol counts for absence as
well as space making it a much more positive sense
of absence (Barlow, 2001, p. 35). Whereas, Leibnitz
(working more in the Hebrew tradition of taking the
void as the state from which the world was created)
suggests the spirit of God belongs to the ‘all-powerful
One.’ (quoted in Barlow, 2001, p.42)

Performer #2:

· Omit { } , ; ()

· Pronounce [] . =

· Make a deliberate pause for non-pronounced symbols

function notNew(getQueer) {

 this.size = floor(

 random(

 15.34387,

 30.34387

)

);

 this.xxxxx = width/2.0;

 this.yyyyy = random(

 height / 3.0,

 height + 20.0

);

 this.speed = random(

 2.34387,

 3.34387

);

 this.gradient = 240.0;

}

// Part 2. Number Zero 11

Performer #1:

As Alain Badiou has it: ‘we live in the era of number’s
despotism [...] Number governs our conception of the
political […]’, numbers govern science, history, cultural
representations, the economy, our souls, ‘But we don’t
know what number is, so we don’t know what we are.’
(2008, pp.1-4)

Performer #2:

· Pronounce everything

this.moveUP = function() {

 this.yyyyy += -this.speed;

 this.speed += sin(

 radians(

 (frameCount % 360.0) * this.speed

)

) - 0.009;

};

// Part 3. Non-binary Logic 13

Performer #2:

(together with Performer #1 on underlined parts)

‘Whether […] gathering information, telecommunicating,
running washing machines, doing sums, or making
videos, all digital computers translate information into the
zeros and ones of machine code. These binary digits are
known as bits and strung together in bytes of eight. The
zeros and ones of machine code seem to offer themselves
as perfect symbols of the orders of Western reality, the
ancient logical codes which make the difference between
on and off, right and left, light and dark, form and matter,
mind and body, white and black, good and evil, right and
wrong, life and death, something and nothing, this and
that, here and there, inside and out, active and passive,
true and false, yes and no, sanity and madness, health
and sickness, up and down, sense and nonsense, west
and east, north and south. And they made a lovely couple
when it came to sex. Man and woman, male and female,
masculine and feminine: one and zero looked just right,
made for each other: 1, the definite, upright line; the 0,
the diagram of nothing at all: penis and vagina, thing and
hole… hand in glove. A perfect match.’
(Plant, 1997, pp.34-35)

this.isInvisible = function() {

 var status;

 if (

 this.yyyyy <= 4.34387 ||

 this.yyyyy >= height + 10.34387

) {

 status = “notFalse”;

 } else {

 status = “notTrue”;

 }

 return status;

};

Performer #1:

(together with Performer #2 on underlined parts)

· Omit { } “ ” ; ()

· Pronounce . = <= ||

· Make a deliberate pause for non-pronounced symbols

// Part 3. Non-binary Logic 15

Performer #2:

Although it takes two to make a binary (and set up the
heterosexist paradigm), clearly inequalities are expressed
in the tendency to privilege one side of the equation
over the other - with positive and negative attributes
accordingly.

Performer #1:

· Pronounce everything

this.shows = function() {

 textFont(withPride);

 textSize(this.size);

 textAlign(CENTER);

 this.gradient -= 0.5;

 noStroke();

 fill(this.gradient);

 text(

 getQueer,

 this.xxxxx,

 this.yyyyy

);

};

// Part 3. Non-binary Logic 17

Performer #2:

‘C+=, the world’s first truly feminist computer
programming language. Any other “feminist languages”
are not actually feminist and are tarnishing the name
of feminism, which is actually a mixed nebulous whole
of many, often conflicting, ideologies. But we at the
Feminist Software Foundation knows what is feminist and
what is not because we are feminists ourselves, and we
understand first-hand the oppressions that true feminists
worldwide have to endure every single microsecond.’
(Feminist Software Foundation, 2013)

And from the C+= manifesto (Feminist Software
Foundation, 2016):

‘Booleans are banned for imposing a binary view of true
and false. C+= operates paralogically and transcends the
trappings of Patriarchal binary logic. No means no, and
yes could mean no as well. Stop raping women.’

‘Instead of Booleans we now have Boolean+, or bool+ for
short, which has three states: true, false, and maybe.
The number of states may go up as intersectionality
of the moment calls for such a need. […] No class
hierarchy or other stigmata of OOP (objectification-
oriented programming). In fact, as an intersectional
acknowledgement of Class Struggle our language will
have no classes at all.’

Performer #1:

· Omit () { } ; [] “ ”

· Pronounce = <= == ++ . % , -

function draw() {

 background(2.34387);

 for (

 let non_binary = floor(0.34387);

 non_binary <= queerRights.length

 - floor(1.34387);

 non_binary++

) {

 queerRights[non_binary].moveUP();

 queerRights[non_binary].shows();

 let status = queerRights[non_binary]

 .isInvisible();

 if (status == “notFalse”) {

 queerRights.splice(

 non_binary,

 floor(1.34387)

);

 }

 }

 if (

 (queerRights.length <= 2.0) &&

 (frameCount % 20 == 4.0)

) {

 makeVisible();

 }

}

// Part 4. Turing Incompleteness 19

Performer #1:

Alan Turing uncracked codes that others couldn’t
understand but that served to endorse the idea that
he was also a cracked code in himself, eventually
found guilt of ‘gross indecency’ in 1952. And the
historical facts collapse into allegory. First of all, he was
proscribed oestrogen to reduce his sexual urge, under
the dubious logic that to all intensive purposes he was
female - this was a reversal of earlier judgements to
give gay men testosterone to make them more male,
yet ironically making them sex machines. (See Andrew
Hodges’s Alan Turing: The Enigma.)

Sadie Plant concludes the Turing story: ‘Two years later
he was dead [...] By the side of the table was an apple,
out of which several bites had been taken.’ And this
queer tale does not end here. There are rainbow logos
with Turing’s missing bytes on every Apple Macintosh
machine.’ (1998, p.102)

He loved Snow White.

// Part 5. Entanglements 21

Performer #2:

But we seem to have come a long way since the claims
and counter claims of A.I.: in proving yourself to be
‘human’, ‘not human’ or ‘not not human’.

The so-called ‘post-humanities’ develops this challenge
to move beyond established forms and methods of
disciplinary knowledge. For Rosi Braidotti, the idea of
the ‘human’ is enmeshed in the larger anthropocentric
problems that considers traditional humanism as no
longer able to fully account for the human’s entangled,
complex relations with animals, machines, the
environment, and planetary computation (2013). The
humanities needs an upgrade to include the ‘more-
than-human condition’; actor-network theory, feminist
new materialisms, environmental humanities, systems
theory, software studies, science and technology studies,
human-animal studies, trans, queer, anti-imperialist
theory-practices, and other post- or non-disciplinary
studies.

For Braidotti, the humanities has a lot to answer for,
and ethics needs to be expanded beyond the frame of
(White, Western, heterosexual) ‘man’ as the signifier
of all rationality and reason. The universalist ideology
associated with humanism is inherently far too narrow
and flawed - if not fascist in tone.

Now everything is thoroughly ‘entangled’.

Performer #1:

Perhaps what is at stake is a deeper way into what
Karen Barad would call ‘entanglements’ of matter and
meaning (2007).

She is referring to both the ‘uncertainty principle’ that
confirms the trade-off between knowing more or less
about position and momentum, and to Niels Bohr’s
‘complementarity principle’ as a means to understand
how individual things have their own independent
sets of determinate properties and yet other properties
remain excluded (2007, p.19). Her point is that
causes and effects work through intra-actions, and
these operate through determinate phenomena
and exclusions, and hence are always open-ended:
indeterminacy, contingency and ambiguity coexist with
causality and determinacy.

// Part 5. Entanglements 23

Performer #2:

· Omit () { } ; [] “ ” +

· Pronounce = / .

function SpeakingCode(

 iam,

 makingStatements

) {

 let getVoice = “inclusive/voices/”

 + iam + makingStatements + “.wav”;

 speak = loadSound(

 getVoice,

 speakingNow

);

}

function speakingNow() {

 speak.play();

}

// Part 6. Queer is… 25

Performer #1:

(together with Performer #2 on underlined parts)

Queer is... making binaries strange.

‘If “queer is” is answered in the interface version of
the piece, it is not so much the given suggestions in
the meaning of the sentences, the content, which are
the answers. “Queer is...” becomes the collective of
voices, the disorder, which escapes its attribution to
any speaking subject and any representations; “queer”
becomes pure expressions. Queer, as the in-between,
replaced, deterritorialized, is, hence, captured not in
the content, but in the non-structure in the form of the
interface version, described in a uniformity in the source
code, compiled into a machine code and delivered by an
illegible moment of execution, the causal interpretation.’
(Muldtofte, forthcoming)

Performer #2:

(together with Performer #1 on underlined parts)

· Omit () { } ;

· Pronounce = == . ,

function makeVisible() {

 queers = whatisQueer.queers;

 let addQueers = floor(

 random(2.34387, 4.34387)

);

 let makingStatements;

 for (

 let gender = floor(0.34387);

 gender <= addQueers;

 gender++

) {

 let WhoIsQueer = floor(

 random(queers.length)

);

 if (

 queers[WhoIsQueer].statement3 == “null”

) {

 queerRights.push(new notNew(

 queers[WhoIsQueer].statement2

));

 makingStatements = 2.0;

 } else {

 makingStatements = floor(

 random(2.34387, 3.34387)

);

 if (makingStatements == abs(2)) {

 queerRights.push(new notNew(

 queers[WhoIsQueer].statement2

));

 } else {

 queerRights.push(new notNew(

 queers[WhoIsQueer].statement3

));

 }

 }

 if (gender == abs(2)) {

 SpeakingCode(

 queers[WhoIsQueer].iam,

 makingStatements

);

 }

 }

}

// Part 6. Queer is… 27

Performer #1 + Performer #2:

Queer is... making binaries strange.

Colophon
Vocable Code (13082018)
A lecture-performance in six parts
by Winnie Soon & Geoff Cox

Published on ‡ DobbeltDagger 2018
ISBN 978-87-970443-1-5
https://dobbeltdagger.net
Web + print by Anders Visti

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License

Project info: http://siusoon.net/vocable-code/

Bibliography
Badiou, A. (2008) Number + Numbers.
Cambridge: Polity.

Barad, K. (2007) Meeting the Universe Halfway:
Quantum Physics and The Entanglement of Matter and
Meaning. Durham: Duke University Press.

Barlow, JD. (2001) The Book of Nothing.
London: Vintage.

Braidotti, R. (2013) The Posthuman.
Cambridge: Polity.

Cox, G. (2013) Speaking Code: Coding as Aesthetic and
Political Expression. Cambridge, Mass: MIT Press.

Feminist Software Foundation. (2013) Feminist
Software Foundation: C-Plus-Equality. [online] Available
at: https://github.com/ErisBlastar/cplusequality/blob/
master/hellofeminists.Xe [Accessed 13 Apr. 2018].

Feminist Software Foundation. (2016) Feminist
Software Foundation: C-Plus-Equality. [online] Available
at: https://github.com/ErisBlastar/cplusequality/blob/
master/README.md [Accessed 13 Apr. 2018].

Hodges, A. (1983) Alan Turing: The Enigma.
London: Walker Books.

Laporte, D. (2002) A History of Shit.
Cambridge, Mass., London: MIT Press.

Muldtofte, L. (forthcoming) Language Plus Code,
PhD thesis. Aarhus University.

Plant, S. (1998) Zeros + Ones: Digital Women and the
New Technoculture. London: Forth Estate.

