
Independent Range Sampling, Revisited∗†

Peyman Afshani1 and Zhewei Wei‡2

1 MADALGO§, Department of Computer Science, Aarhus University, Aarhus,
Denmark
peyman@cs.au.dk

2 School of Information, Renmin University of China, Beijing, China
zhewei@ruc.edu.cn

Abstract
In the independent range sampling (IRS) problem, given an input set P of n points in Rd, the
task is to build a data structure, such that given a range R and an integer t ≥ 1, it returns
t points that are uniformly and independently drawn from P ∩ R. The samples must satisfy
inter-query independence, that is, the samples returned by every query must be independent of
the samples returned by all the previous queries. This problem was first tackled by Hu et al. [15],
who proposed optimal structures for one-dimensional dynamic IRS problem in internal memory
and one-dimensional static IRS problem in external memory.

In this paper, we study two natural extensions of the independent range sampling problem.
In the first extension, we consider the static IRS problem in two and three dimensions in internal
memory. We obtain data structures with optimal space-query tradeoffs for 3D halfspace, 3D
dominance, and 2D three-sided queries. The second extension considers weighted IRS problem.
Each point is associated with a real-valued weight, and given a query range R, a sample is drawn
independently such that each point in P ∩R is selected with probability proportional to its weight.
Walker’s alias method is a classic solution to this problem when no query range is specified. We
obtain optimal data structure for one dimensional weighted range sampling problem, thereby
extending the alias method to allow range queries.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Geometrical
Problems and Computations

Keywords and phrases data structures, range searching, range sampling, random sampling

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.3

1 Introduction

Range searching is a fundamental problems in computational geometry.. The input is a
set P of n data points in d-dimensional real space, Rd (possibly weighted). The goal is to
preprocess the points into a data structure, s.t., given a query range R, the points in P ∩R
can be counted or reported efficiently. Range searching has been studied extensively and we
refer the reader to the survey by Agarwal and Erickson [5] for a broad overview of the area.

Sampling is one of the most natural operations to deal with large data, making efficient
and robust sampling vital in many applications. Here, we consider the range sampling

∗ A full version of the paper is available at http://weizhewei.com/papers/esa17-full.pdf.
† This work was partly supported by the Partially supported by the National Natural Science Foundation

of China (NSFC. 61502503).
‡ Corresponding author.
§ A center of Danish National Research Foundation.

© Peyman Afshani and Zhewei Wei;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 3; pp. 3:1–3:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.3
http://weizhewei.com/papers/esa17-full.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Independent Range Sampling, Revisited

problem, where the goal is to design a data structure to support efficient methods to sample
from data in the query range. These queries do not fit in the traditional range searching
frameworks (such as, the semi-group range searching framework). However, the ability to
generate random samples for a given range is useful in many database applications, such
as online aggregation [14], interactive queries [6] and query optimization [10]. Within the
context of database systems, the importance of sampling queries were identified early on.
Olken and Roten’s survey from 1995 [20] presents various possible sampling strategies as well
as attempts to solve them (see also [19]). However, for spatial queries, i.e., range queries,
most of the existing solutions have shortcomings. In one category of solutions, the idea is
to use R-trees or Quadtrees where the performance of the data structures depend on input
parameters such as “density” and “coverage” [19]. Thus, the worst-case performance of such
solutions could be very bad. In another category of solutions, one can select a random sample
of the points, preprocess and store them in a data structure (see [15] for more details) but
this does not guarantee independence between future and past queries (i.e., asking the same
query twice will return the same set of samples).

Hu et al. [15] studied the independent range sampling problem for the first time using
the worst-case analysis. In this variant, it is required that the results of every query
must be independent from those returned by the previous queries. Thus, issuing the same
query multiple times will fetch different samples, which is desirable in many data analytic
applications [12, 26, 17], For example, in interactive spatial exploration and analytics [12, 26],
the user specifies a query range on the map, and the goal is to continuously generating
samples from that range for analytic purpose. The query process is interactive since the
user can terminate the query whenever s/he finds the precision of the analysis is acceptable.
Independence among the sampling results of all queries is crucial in interactive spatial
exploration and analytics, since the user may issue queries with similar query ranges and
expect to get independent estimations. Hu et al. [15] studied the problem in one dimension
for unweighted points, and proposed a data structure that consumes O(n) space, can be
updated in O(logn) time and can answer queries in O(logn+ t) time, where t is the number
of samples. In this paper, we study the problem in two and three dimensions, and obtain
optimal data structures for some important categories of queries: three dimensional halfspaces
and by extension, three-dimensional dominance queries, and two-dimensional three-sided
queries. We also propose optimal data structure for one-dimensional weighted range sampling
problem, in which the sampling probability is defined by the weights of the points.

We focus on the space-query time trade-off for static data structures that solve the
independent range sampling problem. We focus on the with-replacement sampling, in which
each sample is independent selected from the query range. We defer the discussion on
without-replacement sampling to the full version of the paper [1]. For the unweighted case,
the input is a set P = {p1, · · · , pn} of n points in Rd where U is the domain size, and a
range space R. Given a range R ∈ R and an integer t ≥ 1, the query returns a sequence of
t points, where each element of the sequence is a random point of P ∩ R that is sampled
uniformly and independently (i.e., with probability 1

|P∩R|). We impose the constraint that
the sampling result must be independent from those returned by the previous queries.

For the weighted case, each input point pi is associated with a real-valued weight wi.
The query returns a sequence of t points, where each element of the sequence is a point
pi ∈ P ∩ R sampled independently and with probability wk/

∑
pj∈P∩R wj . Note that if

range R is omitted in each query, such sampling oracle can be implemented with a classic
data structure called Walker’s alias method, which uses linear space and returns a weighted
sample in constant time. Alias method has been successfully adapted in many data mining

P. Afshani and Z. Wei 3:3

algorithms [16, 7], so it is also of theoretical interest to see if it can be extended to support
range queries. We assume the existence of an oracle that can generate random real numbers
or integers in O(1) time. We assume real RAM model of computation: a machine that is
equipped with w-bit integer registers, for w = Ω(logn), as well as real-valued registers that
can store any real number. Arithmetic operations take constant time but storing the contents
of a real-valued register into an integer register (via the “floor” function) is only allowed
when the result has at most w bits 1.

Our results. We obtain an optimal data structure for three dimensional halfspace ranges
for the unweighted independent range sampling problem. Given a query halfspace h, it
can extract t independent uniform random samples from h in O(logn + t) expected time.
The structure uses O(n) space. This also implies optimal data structures for two-sided and
three-dimensional dominance queries. For weighted range sampling problem, we obtain an
optimal data structure for one dimensional point sets in the real RAM model. More precisely,
we assume the coordinate of each point can fit in a word of Θ(logU) bits, and the real value
weights are stored in real registers. The reason we make this assumption is to assure that
the space used to store the weights cannot be charged to the space used to store the points.
The query is given as an interval [a, b], where a and b are indices. The goal is to extract
t independent samples from the indices in [a, b], such that each index i ∈ [a, b] is selected
independently with probability proportional to its weight wi. Our solution uses O(n) space
and answers a query in O(Pred(U,w, n) + t) time, where Pred(U,w, n) is the query time of
a predecessor search data structure that uses O(n) space on an input of size n from the
universe [U] and on a machine with w-bit integers [22].

1.1 Related Work
In the database community, the problem has a long history and it dates back to the 80’s
when it was introduced as the random sampling queries problem. For a database and a given
query (range, relational operator, etc.), the goal is to return a random sample set in the query
result rather than the entire query result itself. Olken and Rotem considered the problem of
independently returning random samples from a query range on B-trees [20], and obtained
a structure that returns a sample with O(logB n) cost. Olken and Rotem also studied the
range sampling problem in high dimensional space using R-tree based structures [21]. We
refer the readers to see an excellent survey in [20].

This problem has regained attention recently, due to the “big query” phenomenon where
a query result may contain a huge number of elements, and thus it is infeasible to list them
all. As mentioned, Hu et al. [15] studied the range sampling problem for one dimensional
points, with insertions and deletions. They proposed a dynamic RAM structure of O(n)
space that answers a range sampling query in O(logn+ t) expected time, and supports an
update in O(logn) time. The static unweighted range sampling problem is trivial for one
dimensional point sets, since given a query with range R = [a, b] and parameter t, one can
perform two predecessor queries to identify the boundaries of the points in R, and one range
counting query with constant cost to obtain P ∩ R, the number of points in R. Then, we
can simply sample from P ∩R by generating t random integers between 1 and |P ∩R| and
accessing the corresponding t points.

1 We actually don’t need a “floor” instruction since we can simulate it using binary search in O(w) time.
As this is used during the preprocessing phase, the query cost can still be kept constant.

ESA 2017

3:4 Independent Range Sampling, Revisited

Walker’s Alias Method. In the weighted sampling problem, the input is a set of non-
negative real numbers w1, . . . , wn, and the goal is to build a data structure, such that a
query extracts an index i with probability pi = wi/

∑n
j=1 wj . The indices returned by

different queries should be independent. The classic solution to this problem is Walkers’ alias
method [25], which uses O(1) query time and O(n) preprocessing time. See the full version
of th paper [1] for short description of this method.

Another problem very related to halfspace range sampling is the halfspace range reporting
problem where the goal is to simply report all the points in the query halfspace. To see this
relationship, observe that extracting t random samples from a query range that contains
only t points should extract a faction of the points in the range with constant probability.
Halfspace range reporting has been extensively studied for over 30 years, and various results
were obtained on this problem. In 2D, the problem was optimally solved in 1985 by Chazelle,
Guibas, and Lee [11] but in contrast, the first optimal solution in 3D was obtained relatively
recently in 2009 by Afshani and Chan [3], where they showed that one can report the set of
points in a query halfspace in O(logn+ t) time using O(n) space where t is the output size.
The 3D solution is based on powerful tools created by Matoušek [24, 18] which have been a
vital part of all the previous attempts to solve halfspace range reporting problems in three
and higher dimensions [8, 24, 23]. Note that the fact that we can match the performance of
the best reporting data structures for the queries considered is very desirable.

2 Unweighted Range Sampling in Three Dimensions

Let p1, · · · , pn be a set of three-dimensional points. The main result of this section is an
optimal data structure that given a query halfspace h, it can extract t independent uniform
random samples from h in O(logn+ t) expected time.

We will use most of the known tools in range reporting: shallow cutting, shallow partition,
and partition theorems together with new ideas that take advantage of the structure of the
range sampling queries. The rough summary of our approach is as follows: we first build a
“core” data structure to sample from query halfspaces that contain many points; later by
using shallow cuttings we can extend this to all query halfspaces. To build the core data
structure, we create a hierarchy of shallow cuttings and then for each cell in the resulting
cuttings, we build data structures that can sample a point uniformly randomly from inside
the cell. This part is the main technical contribution since without additional ideas, this
approach is not going to give us a linear-space solution2. To use only linear space, we build
one “global” data structure which is an array that stores the point set in some order, and
then for each cell in a shallow cutting, we store a data structure of sublinear size that can be
used to generate one “random” entry point per sample, into the global array; the final sample
point is obtained through this random entry point in constant time. A careful analysis shows
that the space complexity of the data structure is indeed linear and that each sample is
picked with the correct probability.

2 An expert reader can verify that this approach can easily give us a solution that uses O(n logn) space, if
we spend O(n) space per each shallow cutting level. By using another classical idea, that is, building the
shallow cuttings every log logn levels and bootstrapping using simplex range searching data structures,
this can be reduced to O(n log logn). However, this approach seems hopeless to get to O(n) space.

P. Afshani and Z. Wei 3:5

τ p3
p2

p1 h

dual space

p1

h
p2

p3

Figure 1 (left) For a k-shallow cutting F , a triangle τ ∈ ∆(F) is shown. For every point on τ ,
there are at least k and at most O(k) hyperplanes passing below it (not shown here). Hτ is the set
of hyperplanes h that are below at least one of the vertices of τ . (right) In dual space, h is a point
that is below at least one of the hyperplanes corresponding to the vertices of τ .

2.1 Preliminaries and Definitions
We present the dual of a hyperplane h (resp. point p) with h (resp. p): a point p that is below
a hyperplane h is mapped to a hyperplane p that passes below the point h. An xy-monotone
function in R3 is a surface, s.t., any line parallel to the z-axis intersects the surface exactly
once. Given an xy-monotone surface F in 3D and a point q = (qx, qy, qz) ∈ R3, we say q is
above F iff the “downward” ray (qx, qy)× [qz,−∞) intersects F . The below relationship is
defined analogously. Let P be a set of points in 3D and let H be a set of n hyperplanes dual
to points in P . A k-shallow cutting F for H is an xy-monotone surface that is a piece-wise
linear function composed of O(n/k) vertices, edges, and triangles, s.t., there are at least k
and at most O(k) hyperplanes passing below every point of F . The conflict list of a point p
on F is defined as the set of all the hyperplanes in H that pass below p and it is denoted by
Hp. The conflict list of a triangle τ ∈ ∆(F) is the set of hyperplanes that pass below τ and
is denoted by Hτ . The set of points dual to Hτ is denoted by Pτ . See Figure 1.

I Theorem 1 (Shallow Cutting Theorem [24]). For any given set H of n hyperplanes in 3D
and an integer 1 ≤ k < n/2, k-shallow cuttings exist. Furthermore, for ki = 2i, 0 ≤ i < logn,
ki-shallow cuttings Fi, together with the conflict lists of all their vertices, can be constructed
in O(n logn) total time.

I Lemma 2. Given a shallow cutting Fi and its set ∆(Fi) of O(n/ki) triangles, we can
build a data structure of size O(n/ki) s.t., given a point p ∈ R3, we can decide if p is below
Fi or not. In the first case, the triangle τ ∈ ∆(Fi) that lies directly above p can be found in
O(logn) time.

Proof. Simply project all the triangles onto the xy-plane. Since Fi is xy-monotone, we
obtain a decomposition of the plane into O(n/ki) triangles. Build a point location data
structure on the planar decomposition [13]. Given the query point p, project it onto the
xy-plane, find the triangle τ whose projection contains the projection of p, and decide if p is
below τ or not. J

I Theorem 3 (Partition Theorem [18]). Given a set P of n points in 3D and an integer
0 < r ≤ n/2, there exists a partition of P into r subsets P1, · · · , Pr, each of size Θ(n/r), s.t.,
each subset Pi is enclosed by a tetrahedron Ti, s.t., any hyperplane crosses O(r2/3) tetrahedra.

I Theorem 4 (Shallow Partition Theorem [24]). Given a set P of n points in 3D and an
integer 0 < r ≤ n/2, there exists a partition of P into r subsets P1, · · · , Pr, each of size
Θ(n/r), s.t., each subset Pi is enclosed by a tetrahedron Ti, s.t., any halfspace that has at
most n/r points of P crosses O(log r) tetrahedra.

We also need the following known optimal data structures for halfspace range reporting
(Theorem 5) and approximate halfspace range counting (Theorem 6).

ESA 2017

3:6 Independent Range Sampling, Revisited

I Theorem 5 ([3]). Given a set P of n points in R3, one can build a data structure of linear
size s.t., given a query halfspace h, it can list the points in P ∩ h in O (logn+ |P ∩ h|) time.

I Theorem 6 ([4, 2]). Given a set P of n points in R3, and a constant ε > 0, one can build
a data structure of linear size s.t., given a halfspace h, in O(logn) time, one can produce an
integer k̃ s.t., k̃/(1 + ε) ≤ |h ∩ P | ≤ k̃.

2.2 The Overall Data Structure
We now return to our original problem. Our input is a set P of n points in R3. Let H be
the set of hyperplanes dual to P . Define ki = 2i, 0 ≤ i < logn. We say an integer m is large
if it is greater than 2C(log logn)2 , for a global constant C to be set later. The following lemma
will be proved in the next subsection.

I Lemma 7. Given a set P of n points, we can build a structure of linear size to answer the
following queries. Given any query halfspace h in which |P ∩ h| is large, we can extract t
independent random samples from P ∩ h in O(logn+ t) time.

Furthermore, the query can be carried over in an “online” fashion. After the initial search
time of O(logn), the data structure can fetch each subsequent sample in O(1) expected time,
until interrupted by the user.

By standard techniques, this gives us our main theorem. See the full version of the
paper [1] for the proof.

I Theorem 8. Given a set P of n points in R3, we can build a data structure of size O(n)
s.t., given a halfspace h and a parameter t, we can extract t samples from the subset P ∩ h
in O(logn+ t) expected time.

Furthermore, the query can be carried over in an “online” fashion, without knowledge
of t: After the initial search time of O(logn), the data structure can fetch each subsequent
sample in O(1) expected time, until interrupted by the user.

The above theorem easily extends to sampling from dominance queries as well. Given two
points p and q in d-dimensional space, q dominates p if every coordinate of q is greater than
that of p. In dominance reporting, the goal is to preprocess a set of n points s.t., given a
query point q all the points dominated by q can be reported efficiently. As observed by Chan
et al. [9], three-dimensional dominance queries can be solved using halfspace queries. It is
also known that a dominance query can solve two-dimensional a three-sided query, that is, a
query region [a, b]× (−∞, c] given by three values a, b, and c.

2.3 Proof of Lemma 7
As previously mentioned, this is the heart of the problem and this is where we significantly
deviate from the previous techniques (even though we use similar building blocks): To obtain
optimal halfspace range reporting, Afshani and Chan [3] rely heavily on the fact that if a
halfspace h contains too many points, then the data structure is allowed to spend a lot of
time on the query, since we will spend a lot of time producing the output; in other words, the
search time can be charged to the output size. In our case, we might be interested only in a
small subset of points in h and thus the search cost cannot be charged to the output size.

Our idea is to build two main components: a global array and a number of local structures.
The global array will store each point once in an array of size n, in some carefully selected
order. The array compactly stores a number of “canonical sets” of total size O(n logn). We

P. Afshani and Z. Wei 3:7

use shallow cuttings to build the local structures. The important point is that the local
structures in total will have sublinear size and their utility is to find entry points into the
global structure: given a query, using the local structures we locate a subarray of the global
array and then uniformly sample from the subarray. We present the technical details below.

Using Shallow Cutting Theorem, we build a ki-shallow cutting Fi (as well as its set of
triangles ∆(Fi)), for each large ki where ki = 2i, 0 ≤ i < logn, We have |∆(Fi)| = O(n/ki)
by the Shallow Cutting theorem. For a triangle τ ∈ ∆(Fi), the conflict lists Hτ and Pτ are
defined as before. Observe that for each triangle τ ∈ ∆(Fi), with vertices p1, p2 and p3, Hτ

is the union of Hp1 , Hp2 , and Hp3 (with duplicates removed). In this subsection, h will refer
to the query halfspace in the primal space. In dual space we will denote h with q. Thus, our
objective is to either sample a random point of P below h, or a random member of Hq (a
random hyperplane of H that passes below q).

The Global Structure. Using Shallow Partition Theorem, we build a partition tree Tglobal

as follows. The root of Tglobal represents P . Consider a node of Tglobal that represents a
subset S ⊆ P . We use Shallow Partition Theorem with parameter r = |S|ε to obtain subsets
S1, · · · , Sr, for a small enough constant ε > 0. If a subset Si contains at most b points, for a
parameter b to be defined later, we call it a base subset. Unlike the approach in [3], we only
recurse on subsets Si that are not base subsets. Thus, the leaves of Tglobal are base subsets.
For each base subset B, we build a secondary data structure that is another partition tree
TB: The root of TB represents B. At a node of TB that represents a subset S ⊆ B, we
use Partition Theorem (not the shallow version) with parameter r = |S|ε to obtain subsets
S1, · · · , Sr. We recurse on each subset Si until we reach subproblems of constant size. We
store an in-order traversal of the leaves of TB, in an array AB; the size of AB is exactly
equal to |B| and for every internal node v ∈ TB the points in the subtree of v are mapped
to a contiguous interval of array AB . We build our global array A by concatenating all the
arrays AB over all base subsets B. Finally, we build a data structure for approximate range
counting queries (Theorem 6).

The Local Structure for τ . Consider a triangle τ ∈ ∆(Fi) and let p1, p2, and p3 be the
vertices of τ . Remember that Hτ was defined as the union of conflict lists of p1, p2, and p3
after duplicate removal (Figure 1). We will store a local structure for τ that consumes o(|Hτ |)
space (O(|Hτ |/ logO(1) n) to be more precise). p1, p2 and p3 correspond to three different
hyperplanes, p1, p2 and p3 in the primal space; a hyperplane h ∈ Hτ corresponds to a point
h ∈ P that is below one of the hyperplanes p1, p2 or p3. Let Pτ be the set of such points (in
other words, Pτ is the set of points dual to hyperplanes in Hτ). Let B1, · · · , Bm be the base
subsets that are intersected by or are below at least one hyperplane pi, 1 ≤ i ≤ 3. We will
store a data structure of size O(mb3/4) at triangle τ : For each base subset Bi, we consider
the partition tree TBi . For every node v ∈ TBi , the subset of points in the subtree of v defines
a canonical subset of Bi. By the properties of partition trees (see e.g., [18]), we can write
Pτ ∩Bi as the union of O(|Bi|2/3 log |Bi|O(1)) = O(|Bi|3/4) = O(b3/4) canonical subsets of Bi.
However, as each subtree of TBi maps to a contiguous interval of ABi , it follows that we can
represent Pτ ∩Bi as the union of O(|Bi|3/4) intervals from ABi . We collect all these intervals,
over all base subsets B1, · · · , Bm. Let I1, · · · , IM be the set of all such intervals. Observe that
we have |I1|+ |I2|+ · · ·+ |IM | = |Pτ | since the intervals partition Pτ . Also, M = O(mb3/4).
We store the numbers |I1|, |I2|, · · · , |IM | in a data structure Tsample(τ) for weighted sampling,
using the Alias method; the data structure consumes O(M) = O(mb3/4) space and in O(1)
time can produce a pointer to an interval Ij with probability |Ij |

|I1|+|I2|+···+|IM | = |Ij |
|Pτ | .

ESA 2017

3:8 Independent Range Sampling, Revisited

Answering Queries. Using approximate halfspace range counting data structure, we can
produce an integer k̃ s.t., k̃/2 ≤ k ≤ k̃. Let i be the smallest index s.t., k̃ ≤ ki. We can
find k̃ and i in O(logn) time, by Theorem 6. Clearly, q is below ki-shallow cutting Fi. Let
τ ∈ ∆(Fi) be the triangle that lies above the query point q. τ can be found in O(logn) time
using a point location query. We claim it is sufficient to be able to sample from Hτ : to
sample a hyperplane that passes below q, we repeat extracting independent uniform samples
from the set Hτ until we find one that passes below q. Since Hq is a subset of Hτ , this
guarantees independent uniform sampling. On the other hand, since |Hq| ≥ k̃/2 we get
that |Hτ | = O(k), and thus on average we need to extract O(t) random samples from Hτ

to produce t random samples from Hq
3. Note that after initial O(logn) time to find τ , we

spend O(1) expected time per sample and thus we can continue without knowledge of t.

Sampling fromHτ . Consider the intervals I1, · · · , IM stored for the triangle τ ; by construc-
tion, the points stored in these intervals form a partition of Pτ . Using structure Tsample(τ),
in O(1) time, we can select an interval Ij with probability |Ij ||Pτ | . Next, we generate a random
integer ` between 1 and |Ij | and output the `-th point in the interval Ij . Clearly, the
probability of outputting an element of Pτ is exactly equal to 1

|Pτ | and query time is O(1)
per sample.

Space Analysis. This is the main part of the proof. First, observe that the global structure
clearly consumes linear space since points in every base subset B are stored only once in
the array AB . Thus it remains to bound the space usage of the local structures. Consider a
triangle τ ∈ ∆(Fi) with its three vertices p1, p2, and p3. Let Hp1 be the set of hyperplanes
of H below p1, or equivalently, let Pp1 be the subset of points of P below the hyperplane p1.
Let k = |Hp1 |. Let f(n, k) be the maximum number of base subsets of Tglobal intersected by
any hyperplane h that lies above k point of P . Remember that we have used the Shallow
Partition theorem with parameter r = nε. If n ≤ b, then we are already at a base subset
so f(b, k) = 1. Otherwise, depending on the value of k, we might intersect either all the r
subsets or only O(log r) subsets. So we get the following recurrence, which is a generalization
of the one found in [3] (we must note that the recurrence in [3] bounds the query time where
here we are only bounding the crossing number):

f(n, k) ≤


1 if n ≤ b∑O(logn)
i=1 f(cn1−ε, ki) if k ≤ n1−ε = n

r∑nε

i=1 f(cn1−ε, ki) if k > n1−ε = n
r

where k =
∑
i ki.

We solve the recurrence by guessing that it solves to the “correct” bound, that is, it solves
to f(n, k) = 2c(log logn)2 + kg(n)/b1−3ε, where g(n) is a monotonously increasing function
that is always upper bounded by a constant and c is a constant. This is similar to the
analysis done in [3], so we postpone the details to the full version of the paper [1].

The analysis shows that the total number of the base sets intersected by three hyperplanes
p1, p2, or p3 is at most 3f(n,O(ki)). Thus, the value m in the local structure of τ is bounded
by 3f(n,O(ki)). The local structure of τ consumes O(mb3/4) space. Remember that we are
aiming to build the data structure for halfspace containing large number of points. Thus,

3 This is the only part that breaks down for the weighted range sampling problem. This is also the only
hurdle that makes the query time “expected”. All the other parts of the data structure work with a
worst-case query time.

P. Afshani and Z. Wei 3:9

ki = Ω(2C(log logn)2). We set the constant C in the definition of a large integer to 2c, which
means ki = Ω(22c(log logn)2). We also set b = logC

′
n for a large enough constant C ′. We

plug the values in f(n, k), and thus space used by the local structure of τ is bounded by

O(mb 3
4) = O

(
f(n,O(ki))b

3
4

)
= O

((
2c(log logn)2

+ ki
b1−3ε

)
b

3
4

)
= O

(
(logn) 3C′

4 2c(log logn)2
+ ki

(logn)(3C′
4 −3ε)

)
= O

(
ki

log2 n

)
if we set C ′ large enough and set ε < 1/4. The number of triangles τ in ∆(Fi) is O(n/ki)
and thus the total amount of space used by the triangles is O(n/ log2 n) and over all the
indices this sums up to o(n). This proves all the local data structures consume sublinear
space and concludes the proof of Lemma 7.

3 Weighted Range Sampling in One Dimensions

In this section, we address the one-dimensional range sampling problem. Let U be an integer
that denotes the universe size of the coordinates. We assume the word size w = Θ(logU),
such that the coordinate of each point can fit in a word. The input is a set P = {p1, · · · , pn}
of n points on grid [u], and each point pi is associated with a non-negative real-valued weight
wi. Given an interval R = [a, b] and an integer t ≥ 1, the query returns a sequence of t
points, where each element of the sequence is random point pi ∈ P ∩ R that is sampled
independently and with probability wk/

∑
pj∈P∩R wj .

Note that the coordinate of a point can be stored in a word of w = Θ(logU) bits, but a
weight is a real number and cannot be stored in an integer word. We say the space usage of
a data structure is S(n) if it uses at most S(n) words and at most S(n) real registers.

Weighted vs. Uniform IRS. We first offer some intuition to show that weighted independent
range sampling is a non-trivial problem, even in one-dimension. Consider one-dimensional
uniform independent range sampling problem. There is a simple solution: we store the points
of P in ascending order using an array A. Given a query range [a, b] and an integer t, we
perform predecessor/successor search to identify the subsequence in A that consists of the
elements covered by q. Then, we can simply sample from the subsequence by generating t
random ranks and accessing t points. The total query cost is O(Pred(U,w, n) + t) where
Pred(U,w, n) is the query time of a predecessor search data structure that uses O(n) space
on an input of size n from the universe [U] and on a machine with w-bit integers [22]. For
the weighted IRS problem, the above approach does not work. The main issue is that
sampling from the identified subsequence requires an alias structure designed specifically to
that subsequence. Since there are Ω(n2) difference subsequences, one needs Ω(n2) space to
make this approach work.

Notations. We begin by defining some notations. Given a set S, we use W (S) to denote
its weight. With a slight abuse of notation, we also use W (S) to denote the set S. Given two
integers 1 ≤ a ≤ b ≤ u, [a, b] is the range from a to b. With a slight abuse of notation, we will
also use [a, b] to denote the points in range [a, b], and W (a, b) =

∑
pk∈[a,b] wk to denote the

total weights in [a, b]. We use Ppre(a) to denote the predecessor of a in P , and Psuc(a) to de-
note the successor of a in P . Given a point pi ∈ [a, b], we use Wpre(pi, a, b) =

∑
pj∈[a,b],j<i wj

to denote the prefix sum of point pi in [a, b], and Wsuc(pi, a, b) =
∑
pj∈[a,b],j>i wj to denote

the suffix sum of point pi in [a, b], respectively.

ESA 2017

3:10 Independent Range Sampling, Revisited

u

v

h

a b

Wpre(Psuc(b), Gb′)Wsuc(Ppre(a), Ga′)

u1

u2 u′1

W (R(u,Ga′)) W (L(u,Gb′)
s = log2 n

Figure 2 A schematic illustration of the
fat points and partial sums.

Less than 1/s2

At most 1/s poured out

Maximum rk∗

r1
Rational probability r′1

Figure 3 A schematic illustration of the
rounding process.

Let T denote a balanced binary tree on the n points, with height h = logn. Given
an internal node u, we use W (u) to denote the total weight of the subtree rooted by u.
Fixing an internal node u and a leaf v in u’s subtree, let P(u, v) be the set of nodes on
the path from u to v, excluding node u. We define the left canonical set of P(u, v) to be
L(u, v) = {w ∈ P(u, v) | w is a left child} ∪ {v}, and similarly the right canonical set to be
R(u, v) = {w ∈ P(u, v) | w is a right child} ∪ {v}. It is easy to see that the point set in
range [a, b] is made up by the subtrees rooted at the nodes in R(u, Ppre(a)) ∪ L(u, Psuc(b)).
Here we define Ppre(a) = Psuc(a) if a is in S.

A baseline structure. We will use the following baseline structure, which uses O(n log2 n)
space draws sample with constant cost. The proof of Lemma 9 is deferred to the ful version
of the paper.

I Lemma 9. For the one-dimensional weighted IRS problem, there is a structure of O(n log2 n)
space that can answer a weighted sampling query in O(Pred(U,w, n) + t) time.

3.1 A structure with linear space and O(log∗ n) query cost
In this subsection, we improve the space of our structure to linear by sacrificing the per-sample
query cost.

Structure. We group the points into m = n/s fat points, G1, · · · , Gm, where each fat
point Gi includes s = log2 n consecutive points. The weight of Gi is defined to be the
summation of weights in Gi. Then we build the baseline structure, denoted by T , on the
fat points. Since the number of fat points is n/s = n/ log2 n, the space usage is reduced to
O(n). Inside each fat point Gi, we bootstrap a baseline structure, denoted by T (Gi), for all s
points contained in Gi. This takes O(s log2 s) = O(log2 n log2 logn) space for each fat point,
and O(n log2 logn) space for all n/ logn fat points. For each point pk ∈ Gi, we also store
Wpre(pk, Gi) and Wsuc(pk, Gi), the prefix and suffix sums of point pk in Gi, respectively.
Finally, we store n global prefix sums, Wpre(pi, P), for i = 1, . . . , n. It is easy to see the total
space usage is O(n log2 logn).

Answering Queries. Given a query range [a, b], we first find Ppre(a), the predecessor of a
and Psuc(b), the successor of b in P , in Pred(U,w, n) time. Then we locate the fat points
Ga′ and Gb′ that contains Ppre(a) and Psuc(b), respectively. Figure 2 illustrates that W (a, b)
can be decomposed into the summation of partial weights in fat leaves Ga′ and Gb′ , and
weights of subtrees in canonical sets R(u,Ga′) and L(u,Gb′). More precisely, we have

W (a, b) =Wsuc(Ppre(a), Ga′) +Wpre(Psuc(b), Gb′) +W (R(u,Ga′)) +W (L(u,Gb′)).

P. Afshani and Z. Wei 3:11

We retrieve these four weights and sample one of the weights. If W (R(u,Ga′)) or
W (L(u,Gb′)) is selected, we sample a fat leaf Gi from Ga′ , . . . , Gb′ using baseline solution
T , and then sample a point pk from Gi using the alias structure A(Gi). Otherwise, assume
that the partial sum Wsuc(Ppre(a), Ga′) is selected. We simply query the baseline structure
in T (Ga′) with range [a,∞) to retrieve a sample as the query result.

Analysis. To see that above sampling procedure gives the correct probability distribution,
note that a point pk in fat pointGa′ is selected if and only if the partial sumWsuc(Ppre(a), Ga′)
is sampled from W (a, b), and pk is sampled from Wsuc(Ppre(a), Ga′). Thus the probability is

wk
Wsuc(Ppre(a), Ga′)

· Wsuc(Ppre(a), Ga′)
W (a, b) = wk

W (a, b) .

On the other hand, consider a point pk in fat point Gi that lies completely in (a, b). Without
loss of generality, we assume Gi is in left canonical set R(u,Ga′) of the baseline structure
T . Observe that pk is selected if and only if the following events happen: 1. W (R(u,Ga′))
is selected from W (a, b); 2. W (Gi) is selected from alias structure A(R(u,Ga′)); 3. pk
is selected from alias structure A(Gi). Thus the probability for pk being picked can be
computed as

W (R(u,Ga′))
W (a, b) · W (Gi)

W (R(u,Ga′))
· wk
W (Gi)

= wk
W (a, b) .

Bootstrap. Now that we have a structure that uses O(n log2 logn) space and answers
weighted IRS queries in O(Pred(U,w, n) + t) time, we can bootstrap this structure to reduce
the space usage. More precisely, we note that the extra log2 logn factor comes from the
baseline structure in each fat point. Thus, we can group the points in a fat point into
secondary fat point of size log2 logn and build the baseline structure in the secondary fat
point to reduce the space usage to O(n log2 log logn). Repeat the bootstrap process log∗ n
times and we will have a structure with O(n) space and O(log∗ n) per-sample query time.
The number of predecessor queries need to be performed is O(log∗ n). However, for dataset
with size O(log logn), a predecessor query can be answered in constant time, which implies
that the time for performing predecessor queries is still bounded by O(PredU,w, n).

I Lemma 10. There is a structure of O(n) space that can answer a one-dimensional weighted
IRS query in O(Pred(U,w, n) + t log∗ n) time.

3.2 A structure with linear space and constant query cost.
In this subsection, we show how to obtain constant query cost by using RAM tricks to pack
multiple integers into a single word.

Packing weights. We first apply the fat point technique twice to reduce the size of a fat
point to s = log2 logn. Note that if there is a linear size structure for s points with constant
per-sample query time, we can apply it to each fat point, and achieve a linear size structure
and constant per-sample query time for arbitrary number of weights.

Consider point sequence p1, . . . , ps with weights w1, · · · , ws, where s = log2 logn. If we
maintain an alias structure for point sequence {wi, . . . , wj}, for any pair 1 ≤ i ≤ j ≤ s, then
we can answer weighted IRS queries with constant time per sample. The problem is that
there are O(s2) such pairs, so it requires Ω(s3) space to store these structures.

ESA 2017

3:12 Independent Range Sampling, Revisited

To reduce the space cost, we round the probabilities to rational numbers with precision
up to 1/s2, and pack multiple rational numbers into a single word. While constructing O(s2)
alias structures for real weights is costly, constructing O(s2) alias structures for rational
weights can be made space-efficient.

More precisely, given index pair 1 ≤ i ≤ j ≤ s, let rk = wk/W (pi, pj), k = i, . . . , j,
be the probability that pk is sampled from {pi, . . . , pj}, and let rk∗ denote the maximum
probability in {ri, . . . , rj}. We conceptually perform the following probability transfers: for
every index ` ∈ [i, j], ` 6= k∗, we define rational probability r′` = dr`s2e/s2, and deviation
α` = r′` − r` < 1/s2. We then pour α` probability mass from rk∗ to r`, to form the rational
probability r′`, for ` 6= k∗. Note that the probability mass left for k∗ is

r′k∗ = rk∗ −
∑
j 6=i1

αj > rk∗ − s ·
1
s2 ≥ rk∗ −

1
s
> 0.

See figure 3. Then we build an alias structure A′(i, j) for r′i, . . . , r′j . Here A′ indicates that we
build the alias structure on the rational probabilities rather than on the original probabilities.
The key insight for this probability transfer is that we can store each rational probability r′i
with 2 log s bits, thus the alias structure A′(a, b) can be represented by O(s log s) bits. Over
all possible pairs (i, j), this sums up to O(s3 log s) = O(log6 logn log log logn) = o(logn)
bits. Thus, we only need one word to store all rational alias structures. We also record the
index k∗ for each pair (i, j), which takes s2 · log s = o(logn) bits and fits in a word. Finally,
we maintain all s prefix sums W (1, pi), i = 1 . . . , s and this requires O(s) real-valued storage.
It is easy to see that the structure takes O(s) space.

Answering queries. We focus on query ranges of form [pi, pj], 1 ≤ i ≤ j ≤ s. Recall that s
is the size of the secondary fat leaves. Note that each query visits at most two fat leaves of size
s, so if we can generate a sample in constant time from ranges of form [pi, pj], 1 ≤ i ≤ j ≤ s,
we can answer weighted IRS queries on n points in O(Pred(U,w, n) + t) time.

Given such a query [pi, pj], we first compute W (pi, pj) by subtracting two prefix sums
W (p1, pj)−W (p1, pi−1). Then we retrieve wk∗ , the maximum weight in [pi, pj], and compute
probability rk∗ = wk∗/W (a, b). We then sample an point pk from the rational alias structure
A′(a, b). If k = k∗, we return pk∗ as a sample. Otherwise, we compute rk = wk/W (a, b)
and roll a random dice z uniformly chosen in [0, r′k]. If z ≤ ri, we return pk as the sample,
otherwise, we return pk∗ as the sample.

Analysis. Since W (pi, pj) and k∗ can be supplied in constant time, the total query cost is
constant. To verify the probability distribution, first consider a point pk ∈ [pi, pj], k 6= k∗.
Observe that pk is sampled if and only if its rational probability r′k is sampled from A′(a, b),
and the random dice z from [0, r′k] is smaller than rk. The probability is r′i · rir′

i
= ri. On the

other hand, this also implies that k∗ is returned with probability 1−
∑
pk∈[pi,pj],k 6=k∗ rk = rk∗ .

Thus the sampling probability distribution is correct, and we obtain the following theorem.

I Theorem 11. Given a set P = {p1, · · · , pn} of n points on grid [U], such that each point
pi is associated with an non-negative real-valued weight wi, we can build a data structure
of size O(n), such that given a interval [a, b] and a parameter t, we can extract t weighted
random samples from the subset P ∩ [a, b] in O(Pred(U,w, n) + t) time.

P. Afshani and Z. Wei 3:13

4 Conclusions

In this paper we considered the range sampling queries where the goal is to store a given set
of points in a data structure such that given a geometric range, a query returns a random
sample of the points contained in the query range. We optimally solved some of the important
cases of the problem: 3D halfspace queries for unweighted points, 3D dominance queries and
2D three-sided queries, and 1D two-sided (interval) queries for weighted points.

There are still a number of interesting open problems left to consider. For example, we
have not investigated weighted 2D orthogonal queries at all. Also, while we solve three-sided
and two-sided queries for the unweighted case, 2d four-sided queries for the unweighted case
is still unsolved. Another direction is to consider weighted 3D halfspace queries.

References
1 http://weizhewei.com/papers/esa17-full.pdf.
2 Peyman Afshani and Timothy M. Chan. On approximate range counting and depth. Dis-

crete and Computational Geometry, 42:3–21, 2009. doi:10.1007/s00454-009-9177-z.
3 Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three di-

mensions. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 180–186, 2009.

4 Peyman Afshani, Chris Hamilton, and Norbert Zeh. A general approach for cache-oblivious
range reporting and approximate range counting. Computational Geometry: Theory and
Applications, 43:700–712, 2010. preliminary version at SoCG’09.

5 Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives. Advances
in Discrete and Computational Geometry, pages 1–56, 1999.

6 Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and Ion
Stoica. Blinkdb: queries with bounded errors and bounded response times on very large
data. In Proceedings of the 8th ACM European Conference on Computer Systems, pages
29–42. ACM, 2013.

7 Arnab Bhadury, Jianfei Chen, Jun Zhu, and Shixia Liu. Scaling up dynamic topic models.
In Proceedings of International World Wide Web Conferences (WWW), pages 381–390.
International World Wide Web Conferences Steering Committee, 2016.

8 Timothy M. Chan. Random sampling, halfspace range reporting, and construction of (<=
k)-levels in three dimensions. SIAM Journal of Computing, 30(2):561–575, 2000.

9 Timothy M. Chan, Kasper Green Larsen, and Mihai Patrascu. Orthogonal Range Searching
on the RAM, Revisited. arXiv preprint arXiv:1103.5510, 2011.

10 Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. Random sampling for histogram
construction: How much is enough? In ACM SIGMOD Record, pages 436–447. ACM, 1998.

11 Bernard Chazelle, Leonidas J. Guibas, and D.T. Lee. The power of geometric duality. BIT
Numerical Mathematics, 25(1):76–90, 1985.

12 Robert Christensen, Lu Wang, Feifei Li, Ke Yi, Jun Tang, and Natalee Villa. Storm: Spatio-
temporal online reasoning and management of large spatio-temporal data. In Proceedings
of ACM Management of Data (SIGMOD), pages 1111–1116. ACM, 2015.

13 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 3 edition, 2008.

14 Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online aggregation. ACM
SIGMOD Record, 26(2):171–182, 1997.

15 Xiaocheng Hu, Miao Qiao, and Yufei Tao. Independent range sampling. In Proceedings of
ACM Symposium on Principles of Database Systems (PODS), pages 246–255. ACM, 2014.

ESA 2017

http://weizhewei.com/papers/esa17-full.pdf
http://dx.doi.org/10.1007/s00454-009-9177-z

3:14 Independent Range Sampling, Revisited

16 Aaron Q. Li, Amr Ahmed, Sujith Ravi, and Alexander J. Smola. Reducing the sampling
complexity of topic models. In Proceedings of ACM Knowledge Discovery and Data Mining
(SIGKDD), pages 891–900. ACM, 2014.

17 Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. Wander join: Online aggregation via random
walks. In Proceedings of the 2016 International Conference on Management of Data, pages
615–629. ACM, 2016.

18 Jiří Matoušek. Efficient partition trees. Discrete & Computational Geometry, 8(3):315–334,
1992.

19 Frank Olken. Random sampling from databases. PhD thesis, University of California at
Berkeley, 1993.

20 Frank Olken and Doron Rotem. Random sampling from databases: a survey. Statistics
and Computing, 5(1):25–42, 1995.

21 Frank Olken and Doron Rotem. Sampling from spatial databases. Statistics and Computing,
5(1):43–57, 1995.

22 Mihai Patrascu and Mikkel Thorup. Time-space trade-offs for predecessor search. In
Proceedings of ACM Symposium on Theory of Computing (STOC), pages 232–240, 2006.

23 Edgar A. Ramos. On range reporting, ray shooting and k-level construction. In Symposium
on Computational Geometry (SoCG), pages 390–399, 1999.

24 Jiří Matoušek. Reporting points in halfspaces. Computational Geometry, Theory and
Applications, 2(3):169–186, 1992.

25 Alastair J. Walker. New fast method for generating discrete random numbers with arbitrary
frequency distributions. Electronics Letters, 10(8):127–128, 1974.

26 LuWang, Robert Christensen, Feifei Li, and Ke Yi. Spatial online sampling and aggregation.
Proceedings of the VLDB Endowment, 9(3), 2015.

	Introduction
	Related Work

	Unweighted Range Sampling in Three Dimensions
	Preliminaries and Definitions
	The Overall Data Structure
	Proof of Lemma 7

	Weighted Range Sampling in One Dimensions
	A structure with linear space and O(log*n) query cost
	A structure with linear space and constant query cost.

	Conclusions

