Zeolite reduces N leaching and runoff loss while increasing rice yields under alternate wetting and drying irrigation regime

Yanzhi Wang, Ji Chen, Yidi Sun, Yanting Jiao, Yi Yang, Xiaoqi Yuan, Poul Erik Lærke, Qi Wu*, Daocai Chi

*Corresponding author for this work

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

20 Citations (Scopus)

Abstract

Emerging studies provide promising evidence that applying zeolite combined with water-saving irrigation could effectively retain soil nutrients and increase rice yields. However, the effects of this water-nitrogen management strategy on soil nitrogen (N) loss through leaching and runoff are unclear under field conditions. Herein, we explored the dynamics of N concentrations, quantified soil N losses through leachate and runoff, and investigated the response of reducing N loss on rice yield. A three-year field experiment (2018−2020) was conducted in Donggang city of Liaoning Province in northeast China. The field experiment used a split-plot design, including two irrigation regimes [continuously flooded irrigation (CF) and alternate wetting and drying irrigation (AWD)] as main plots, and two zeolite applications (Z0, no zeolite; Z10, 10 t ha−1 zeolite) as sub-plots, so as to quantify their effects on TN, NH4+-N, NO3−-N loss, and rice yield. Averaged across 3 years, our results showed that AWD reduced the volume of irrigation, leachate, and runoff by 22.2%, 20.8%, and 18.9%, respectively, compared with CF. AWD also decreased the losses of total N (TN), NH4+-N, and NO3−-N by 25.5%, 17.5%, and 11.1% in leachate and by 22.9%, 18.3%, and 26.3% in runoff, respectively, compared with CF. Compared to Z0, Z10 reduced the losses of TN, NH4+-N, and NO3−-N by 16.0%, 16.9%, and 19.4% in leachate and by 10.0%, 14.0%, and 5.9% in runoff, respectively. N output through leaching and runoff under AWD and Z10 was decreased by 2.1% and 2.2%, respectively, compared with CF and Z0. No significant difference was found in rice yield between CF and AWD, whereas rice yields increased 3.3% under Z10 compared with Z0. Altogether, our results highlight that the combination of zeolite and AWD can simultaneously produce more rice yield and reduce soil N losses.
Original languageEnglish
Article number108130
JournalAgricultural Water Management
Volume277
Number of pages14
ISSN0378-3774
DOIs
Publication statusPublished - 1 Mar 2023

Keywords

  • Paddy fields
  • Nitrogen management
  • Water saving irrigation
  • Nitrogen output
  • Agricultural environment

Fingerprint

Dive into the research topics of 'Zeolite reduces N leaching and runoff loss while increasing rice yields under alternate wetting and drying irrigation regime'. Together they form a unique fingerprint.

Cite this