Visualizing hydrogen-induced reshaping and edge activation in MoS2 and Co-promoted MoS2 catalyst clusters

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Documents

DOI

Hydrodesulfurization catalysis ensures upgrading and purification of fossil fuels to comply with increasingly strict regulations on S emissions. The future shift toward more diverse and lower-quality crude oil supplies, high in S content, requires attention to improvements of the complex sulfided CoMo catalyst based on a fundamental understanding of its working principles. In this study, we use scanning tunneling microscopy to directly visualize and quantify how reducing conditions transforms both cluster shapes and edge terminations in MoS2 and promoted CoMoS-type hydrodesulfurization catalysts. The reduced catalyst clusters are shown to be terminated with a fractional coverage of sulfur, representative of the catalyst in its active state. By adsorption of a proton-accepting molecular marker, we can furthermore directly evidence the presence of catalytically relevant S-H groups on the Co-promoted edge. The experimentally observed cluster structure is predicted by theory to be identical to the structure present under catalytic working conditions.

Original languageEnglish
Article number2211
JournalNature Communications
Volume9
Number of pages11
ISSN2041-1723
DOIs
Publication statusPublished - 7 Jun 2018

    Research areas

  • ATOMIC-SCALE STRUCTURE, SINGLE-LAYER MOS2, HYDROTREATING CATALYSTS, HYDRODESULFURIZATION CATALYSTS, ELECTRONIC-STRUCTURE, NANOCLUSTERS, MORPHOLOGY, DFT, NANOPARTICLES, SITES

See relations at Aarhus University Citationformats

Download statistics

No data available

ID: 128400669