Aarhus University Seal

Visualisation of axolotl blastema cells and pig endothelial progenitor cells using very small super paramagnetic iron oxide particles in MRI: A technique with applications for non invasive visualisation of regenerative processes

Research output: Contribution to conferenceConference abstract for conferenceResearchpeer-review

Objectives: Regenerative studies on model animals often require invasive techniques such as tissue sampling and histology for visualisation of regenerative processes. These interactions are avoided using non invasive imaging techniques. The internalisation of very small super paramagnetic iron oxide particles (VSOP) in animal cells enable non invasive cell tracking using magnetic resonance imaging (MRI) and can prove useful, when visualising regenerative processes. This study examines the possibility of labelling limited numbers of axolotl blastema cells (aBC) and pig endothelial progenitor cells (pEPC) with VSOP and detecting these in vitro and in vivo using a traditional clinical 1.5 T scanner.
Methods: aBC and pEPG were incubated with VSOP C200 Vitro (Ferropharm) at different concentrations. T1- and T2*-weighted MRI was applied to labelled and control cells in vitro and to cells implanted in live axolotl tail and dead porcine heart, respectively. Cellular iron uptake was determined using inductively coupled plasma optical emission spectrometry (ICP-OES).
Results: T2*-weighted 2D gradient-echo sequences on samples of 10˄5 cells yielded at significant linear correlations between labelling concentration and signal decrease (F-ratio = 36.52, p < 0.0001, R˄2 = 0.16) in vitro. Implanted cells were easily distinguishable as dark spots with negative contrast relative to surrounding tissue. Applying a T1-weighted 2D spin-echo sequence on samples of 10˄6 cells yielded a significant increase in signal intensity of 9.0 % at low concentrations, 8.2 pg Fe/cell, (F-ratio = 30.88, p < 0.0001) in vitro. In vivo, cells labelled at low concentration appeared bright with positive contrast, whereas cells labelled at higher concentration again appeared dark.
Conclusion: aBC and pEPG labelled with VSOP can be detected in 1.5 T MRI. Cells labelled at relatively high concentrations appear dark with less contrast, whereas labelling at low concentrations induces positive contrast.
Original languageEnglish
Publication year11 Jul 2010
Number of pages1
Publication statusPublished - 11 Jul 2010
Event3rd International Congress on Stem Cells and Tissue Formation - Internationales Congress Center Dresden, Dresden, Germany
Duration: 11 Jul 201014 Jul 2010

Conference

Conference3rd International Congress on Stem Cells and Tissue Formation
LocationInternationales Congress Center Dresden
CountryGermany
CityDresden
Period11/07/201014/07/2010

See relations at Aarhus University Citationformats

Activities

ID: 44517026