Aarhus University Seal

Visible Near-Infrared Spectroscopy and Pedotransfer Function Well Predict Soil Sorption Coefficient of Glyphosate

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review


The soil sorption coefficient (Kd) of glyphosate mainly controls its transport and fate in the environment. Laboratory-based analysis of Kd is laborious and expensive. This study aimed to test the feasibility of visible near-infrared spectroscopy (vis–NIRS) as an alternative method for glyphosate Kd estimation at a country scale and compare its accuracy against pedotransfer function (PTF). A total of 439 soils with a wide range of Kd values (37–2409 L kg−1) were collected from Denmark (DK) and southwest Greenland (GR). Two modeling scenarios were considered to predict Kd: a combined model developed on DK and GR samples and individual models developed on either DK or GR samples. Partial least squares regression (PLSR) and artificial neural network (ANN) techniques were applied to develop vis–NIRS models. Results from the best technique were validated using a prediction set and compared with PTF for each scenario. The PTFs were built with soil texture, OC, pH, Feox, and Pox. The ratio of performance to interquartile distance (RPIQ) was 1.88, 1.70, and 1.50 for the combined (ANN), DK (ANN), and GR (PLSR) validation models, respectively. vis–NIRS obtained higher predictive ability for Kd than PTFs for the combined dataset, whereas PTF resulted in slightly better estimations of Kd on the DK and GR samples. However, the differences in prediction accuracy between vis–NIRS and PTF were statistically insignificant. Considering the multiple advantages of vis–NIRS, e.g., being rapid and non-destructive, it can provide a faster and easier alternative to PTF for estimating glyphosate Kd.

Original languageEnglish
Article number1712
JournalRemote Sensing
Publication statusPublished - Mar 2023

Bibliographical note

Publisher Copyright:
© 2023 by the authors.

    Research areas

  • alternative to wet chemistry analysis, modeling, multivariate data analysis, pesticide sorption, soil contaminant, visible near-infrared spectroscopy

See relations at Aarhus University Citationformats

ID: 319507915