Aarhus University Seal

Tuning oxygen vacancies and resistive switching properties in ultra-thin HfO2 RRAM via TiN bottom electrode and interface engineering

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review



  • Zhihua Yong, NanoLund, Lund University
  • ,
  • Karl Magnus Persson, Lund University
  • ,
  • Mamidala Saketh Ram, Lund University
  • ,
  • Giulio D'Acunto, NanoLund, Lund University
  • ,
  • Yi Liu, NanoLund, Lund University
  • ,
  • Sandra Benter, NanoLund, Lund University
  • ,
  • Jisheng Pan, Agency for Science, Technology and Research
  • ,
  • Zheshen Li
  • Mattias Borg, Lund University
  • ,
  • Anders Mikkelsen, NanoLund, Lund University
  • ,
  • Lars Erik Wernersson, Lund University
  • ,
  • Rainer Timm, NanoLund, Lund University

Resistive random access memory (RRAM) technologies based on non-volatile resistive filament redox switching oxides have the potential of drastically improving the performance of future mass-storage solutions. However, the physico-chemical properties of the TiN bottom metal electrode (BME) can significantly alter the resistive switching (RS) behavior of the oxygen-vacancy RRAM devices, yet the correlation between RS and the physico-chemical properties of TiN and HfOx/TiN interface remains unclear. Here, we establish this particular correlation via detailed material and electrical characterization for the purpose of achieving further performance enhancement of the stack integration. Two types of RRAM stacks were fabricated where the TiN BME was fabricated by physical vapor deposition (PVD) and atomic layer deposition (ALD), respectively. The HfOx layer in HfOx/PVD-TiN is more oxygen deficient than that of the HfOx/ALD-TiN because of more defective PVD-TiN and probably because pristine ALD-TiN has a thicker TiO2 overlayer. Higher concentration of oxygen vacancies induces a larger magnitude of band bending at the HfOx/PVD-TiN interface and leads to the formation of a higher Schottky barrier. Pulsed endurance measurements of up to 106 switches, with 10 μA ± 1.0 V pulses, demonstrate the potential of the studied ultra-thin-HfOx/TiN device stack for dense, large scale, and low-power memory integration.

Original languageEnglish
Article number149386
JournalApplied Surface Science
Number of pages13
Publication statusPublished - Jun 2021

    Research areas

  • Band bending, Hafnium oxide, Resistive switching, RRAM, Titanium nitride, X-ray photoelectron spectroscopy

See relations at Aarhus University Citationformats

ID: 229022573