Tunable Superstructures of Dendronized Graphene Nanoribbons in Liquid Phase

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

DOI

  • Fugui Xu, Shanghai Jiao Tong University
  • ,
  • Chunyang Yu, Shanghai Jiao Tong University
  • ,
  • Alexander Tries, Max-Planck-Institut für Polymerforschung, Johannes Gutenberg-Universität Mainz
  • ,
  • Heng Zhang, Max-Planck-Institut für Polymerforschung
  • ,
  • Mathias Klaeui, Johannes Gutenberg-Universität Mainz
  • ,
  • Kristoffer Basse
  • ,
  • Michael Ryan Hansen, Westfälische Wilhelms-Universität Münster
  • ,
  • Nerea Bilbao, KU Leuven Celestijnenlaan
  • ,
  • Mischa Bonn, Max-Planck-Institut für Polymerforschung
  • ,
  • Hai I. Wang, Max-Planck-Institut für Polymerforschung
  • ,
  • Yiyong Mai, Shanghai Jiao Tong University

In this Communication, we report the first synthesis of structurally well-defined graphene nanoribbons (GNRs) functionalized with dendritic polymers. The resultant GNRs possess grafting ratios of 0.59-0.68 for the dendrons of different generations. Remarkably, the precise 3D branched conformation of the grafted dendrons affords the GNRs unprecedented 1D supramolecular self-assembly behavior in tetrahydrofuran (THF), yielding nanowires, helices and nanofibers depending on the dimension of the dendrons. The GNR superstructures in THF exhibit near-infrared absorption with maxima between 650 and 700 nm, yielding an optical bandgap of 1.2-1.3 eV. Ultrafast photoconductivity analyses unveil that the helical structures exhibit the longest free carrier (3.5 ps) and exciton lifetime (several hundred ps) among the three superstructure systems. This study opens pathways for tunable construction of ordered GNR superstructures with promising optoelectronic applications.

Original languageEnglish
JournalJournal of the American Chemical Society
Volume141
Issue28
Pages (from-to)10972-10977
Number of pages6
ISSN0002-7863
DOIs
Publication statusPublished - Jul 2019

    Research areas

  • BOTTOM-UP SYNTHESIS, ELECTRONIC-PROPERTIES, EDGE, PHOTOCONDUCTIVITY, DENDRIMERS

See relations at Aarhus University Citationformats

ID: 161345019