Aarhus University Seal / Aarhus Universitets segl

Truthful approximations to range voting

Research output: Working paper/Preprint Working paperResearch

We consider the fundamental mechanism design problem of approximate social welfare maximization under general cardinal preferences on a finite number of alternatives and without money. The well-known range voting scheme can be thought of as a non-truthful mechanism for exact social welfare maximization in this setting. With m being the number of alternatives, we exhibit a randomized truthful-in-expectation ordinal mechanism implementing an outcome whose expected social welfare is at least an Omega(m^{-3/4}) fraction of the social welfare of the socially optimal alternative. On the other hand, we show that for sufficiently many agents and any truthful-in-expectation ordinal mechanism, there is a valuation profile where the mechanism achieves at most an O(m^{-{2/3}) fraction of the optimal social welfare in expectation. We get tighter bounds for the natural special case of m = 3, and in that case furthermore obtain separation results concerning the approximation ratios achievable by natural restricted classes of truthful-in-expectation mechanisms. In particular, we show that for m = 3 and a sufficiently large number of agents, the best mechanism that is ordinal as well as mixed-unilateral has an approximation ratio between 0.610 and 0.611, the best ordinal mechanism has an approximation ratio between 0.616 and 0.641, while the best mixed-unilateral mechanism has an approximation ratio bigger than 0.660. In particular, the best mixed-unilateral non-ordinal (i.e., cardinal) mechanism strictly outperforms all ordinal ones, even the non-mixed-unilateral ordinal ones.
Original languageEnglish
Number of pages18
Publication statusPublished - 2013

See relations at Aarhus University Citationformats

ID: 68613828