Abstract
Inter-alpha-inhibitor, TSG-6, and hyaluronan have important functions in fertility and inflammation. Two subunits of inter-alpha-inhibitor, the heavy chains, form covalent bonds with TSG-6 or hyaluronan in vitro. TSG-6-heavy chain complexes serve as intermediates in the transfer of heavy chains from inter-alpha-inhibitor to hyaluronan. In vivo, in addition to these complexes, stable ternary complexes of hyaluronan with both TSG-6 and heavy chains have been demonstrated in the ovulatory cumulus oophorus. In our ongoing efforts to characterize the multiple interactions between hyaluronan, TSG-6 and inter-alpha-inhibitor, we recently characterized the formation of highly stable complexes of TSG-6 with hyaluronan that had been tethered to a solid surface. Here we show that these hyaluronan-TSG-6 complexes are functionally active and transfer heavy chain subunits from inter-alpha-inhibitor to either free or surface-bound hyaluronan. Transitional hyaluronan-TSG-6-heavy chain complexes do not accumulate in vitro. Our data show the capability for heavy chain transfer by both free TSG-6 and preformed hyaluronan-TSG-6 complexes, suggesting that both might contribute to hyaluronan modification in vivo. Transfer of heavy chains to surface-tethered hyaluronan by either free TSG-6 or surface-tethered hyaluronan-TSG-6 complexes did not affect the CD 44-mediated binding of BW 5147 cells in vitro. We show how TSG-6 and hyaluronan together can deplete inter-alpha-inhibitor and generate bikunin, as has been observed in sepsis, and discuss the role of TSG-6 in the generation of hyaluronan-heavy chain complexes associated with ovulation, arthritis, and sepsis.
Original language | English |
---|---|
Journal | Journal of Biological Chemistry |
Volume | 284 |
Issue | 4 |
Pages (from-to) | 2320-2231 |
Number of pages | 12 |
ISSN | 0021-9258 |
DOIs | |
Publication status | Published - 23 Jan 2009 |
Keywords
- Alpha-Globulins
- Antigens, CD44
- Cell Adhesion Molecules
- Cell Line
- Hyaluronic Acid
- Metals
- Osmolar Concentration
- Protein Binding