The Use of Surfactants to Solubilise a Glucagon Analogue

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

  • Jens Kvist Madsen, Zealand Pharma A/S, Glostrup
  • ,
  • Lise Giehm, Zealand Pharma A/S, Glostrup
  • ,
  • Daniel E Otzen

PURPOSE: The peptide hormone glucagon, used to treat hypoglycaemic incidents, is prone to aggregation. Generating alternatives with better stability is of pharmaceutical interest in the treatment of diabetes. Here we investigate the impact of six different surfactants on the solubility and stability of ZP-GA-1, a stable version of glucagon.

METHODS: We use chemical surfactants (sodium dodecyl sulphate, dodecyl maltoside and polysorbate 20) and the biosurfactants rhamnolipid, sophorolipid and surfactin. We investigate their interaction with ZP-GA-1 by pyrene fluorescence, circular dichroism and isothermal titration calorimetry.

RESULTS: All six surfactants induce α-helical structure in ZP-GA-1, SDS having the biggest impact and polysorbate 20 the smallest. SDS keeps ZP-GA-1 solubilised over >48 days as opposed to 29 days in DDM, 3 days in polysorbate 20 and 0 days in buffer. Similarly, much less SDS than DDM, polysorbate 20 or biosurfactant is needed to redissolve aggregated ZP-GA-1. ITC confirms this trend, with SDS exhibiting very strong, and polysorbate 20 very weak interactions.

CONCLUSION: Simple surfactant structures promote stronger peptide interactions. ITC shows promise as a general strategy to predict surfactants' solubilising powers. Stronger enthalpic interactions improved the absolute solubility of ZP-GA-1 and their strength correlated to the absolute solubility of the peptides though not to the kinetics of precipitation.

Original languageEnglish
Article number235
JournalPharmaceutical Research
Volume35
Issue12
ISSN0724-8741
DOIs
Publication statusPublished - Dec 2018

See relations at Aarhus University Citationformats

ID: 134389472