TY - JOUR
T1 - The secondary structure of diatom silaffin peptide R5 determined by two-dimensional infrared spectroscopy
AU - Thomassen, Asger Berg
AU - Jansen, Thomas L.C.
AU - Weidner, Tobias
N1 - Publisher Copyright:
© 2024 The Royal Society of Chemistry.
PY - 2024/7/21
Y1 - 2024/7/21
N2 - Diatoms, unicellular marine organisms, harness short peptide repeats of the protein silaffin to transform silicic acid into biosilica nanoparticles. This process has been a white whale for material scientists due to its potential in biomimetic applications, ranging from medical to microelectronic fields. Replicating diatom biosilicification will depend on a thorough understanding of the silaffin peptide structure during the reaction, yet existing models in the literature offer conflicting views on peptide folding during silicification. In our study, we employed two-dimensional infrared spectroscopy (2DIR) within the amide I region to determine the secondary structure of the silaffin repeat unit 5 (R5), both pre- and post-interaction with silica. The 2DIR experiments are complemented by molecular dynamics (MD) simulations of pure R5 reacting with silicate. Subsequently, theoretical 2DIR spectra calculated from these MD trajectories allowed us to compare calculated spectra with experimental data, and to determine the diverse structural poses of R5. Our findings indicate that unbound R5 predominantly forms β-strand structures alongside various atypical secondary structures. Post-silicification, there's a noticeable shift: a decrease in β-strands coupled with an increase in turn-type and bend-type configurations. We theorize that this structural transformation stems from silicate embedding within R5's hydrogen-bond network, prompting the peptide backbone to contract and adapt around the biosilica precursors.
AB - Diatoms, unicellular marine organisms, harness short peptide repeats of the protein silaffin to transform silicic acid into biosilica nanoparticles. This process has been a white whale for material scientists due to its potential in biomimetic applications, ranging from medical to microelectronic fields. Replicating diatom biosilicification will depend on a thorough understanding of the silaffin peptide structure during the reaction, yet existing models in the literature offer conflicting views on peptide folding during silicification. In our study, we employed two-dimensional infrared spectroscopy (2DIR) within the amide I region to determine the secondary structure of the silaffin repeat unit 5 (R5), both pre- and post-interaction with silica. The 2DIR experiments are complemented by molecular dynamics (MD) simulations of pure R5 reacting with silicate. Subsequently, theoretical 2DIR spectra calculated from these MD trajectories allowed us to compare calculated spectra with experimental data, and to determine the diverse structural poses of R5. Our findings indicate that unbound R5 predominantly forms β-strand structures alongside various atypical secondary structures. Post-silicification, there's a noticeable shift: a decrease in β-strands coupled with an increase in turn-type and bend-type configurations. We theorize that this structural transformation stems from silicate embedding within R5's hydrogen-bond network, prompting the peptide backbone to contract and adapt around the biosilica precursors.
UR - http://www.scopus.com/inward/record.url?scp=85196429564&partnerID=8YFLogxK
U2 - 10.1039/d4cp00970c
DO - 10.1039/d4cp00970c
M3 - Journal article
C2 - 38888161
AN - SCOPUS:85196429564
SN - 1463-9076
VL - 26
SP - 18538
EP - 18546
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 27
ER -