Aarhus University Seal

The Hitchin connection for the Quantization of the moduli space of parabolic bundles on surfaces with marked points​

Research output: Book/anthology/dissertation/reportPh.D. thesis

Standard

The Hitchin connection for the Quantization of the moduli space of parabolic bundles on surfaces with marked points​. / Bjerre, Mette.

2018. 109 p.

Research output: Book/anthology/dissertation/reportPh.D. thesis

Harvard

APA

CBE

MLA

Vancouver

Author

Bibtex

@phdthesis{428582a057dc45eea087843079171573,
title = "The Hitchin connection for the Quantization of the moduli space of parabolic bundles on surfaces with marked points​",
abstract = "I denne afhandling definerer vi modulirummet af flade konnektioner over en flade med punkteringer og en v{\ae}gt i hver punktering. Vi definerer forskellige modulirum, blandt andet ved brug af Sobolev rum og parabolske bundter, som er diffeomorfe til modulirummet af flade konnektioner, på den glatte del. Formålet med denne thesis er at finde en Hitchin konnektion i denne setting, med så få antagelser på v{\ae}gtene som muligt. Vi bruger den generelle konstruktion af Hitchin konnektionen i metaplektisk korrektion af Andersen, Gammelgård og Roed, til at finde en sådan Hitchin konnektion.",
author = "Mette Bjerre",
year = "2018",
month = jan,
day = "22",
language = "English",

}

RIS

TY - BOOK

T1 - The Hitchin connection for the Quantization of the moduli space of parabolic bundles on surfaces with marked points​

AU - Bjerre, Mette

PY - 2018/1/22

Y1 - 2018/1/22

N2 - I denne afhandling definerer vi modulirummet af flade konnektioner over en flade med punkteringer og en vægt i hver punktering. Vi definerer forskellige modulirum, blandt andet ved brug af Sobolev rum og parabolske bundter, som er diffeomorfe til modulirummet af flade konnektioner, på den glatte del. Formålet med denne thesis er at finde en Hitchin konnektion i denne setting, med så få antagelser på vægtene som muligt. Vi bruger den generelle konstruktion af Hitchin konnektionen i metaplektisk korrektion af Andersen, Gammelgård og Roed, til at finde en sådan Hitchin konnektion.

AB - I denne afhandling definerer vi modulirummet af flade konnektioner over en flade med punkteringer og en vægt i hver punktering. Vi definerer forskellige modulirum, blandt andet ved brug af Sobolev rum og parabolske bundter, som er diffeomorfe til modulirummet af flade konnektioner, på den glatte del. Formålet med denne thesis er at finde en Hitchin konnektion i denne setting, med så få antagelser på vægtene som muligt. Vi bruger den generelle konstruktion af Hitchin konnektionen i metaplektisk korrektion af Andersen, Gammelgård og Roed, til at finde en sådan Hitchin konnektion.

M3 - Ph.D. thesis

BT - The Hitchin connection for the Quantization of the moduli space of parabolic bundles on surfaces with marked points​

ER -