Abstract
Many bacteria export intracellular calcium using active transporters homologous to the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). Here we present three crystal structures of Ca2+-ATPase 1 from Listeria monocytogenes (LMCA1). Structures with BeF3- mimicking a phosphoenzyme state reveal a closed state, which is intermediate between the outward-open E2P and the proton-occluded E2-P* conformations known for SERCA. It suggests that LMCA1 in the E2P state is pre-organized for dephosphorylation upon Ca2+ release, consistent with the rapid dephosphorylation observed in single-molecule studies. An arginine side-chain occupies the position equivalent to calcium binding site I in SERCA, leaving a single Ca2+ binding site in LMCA1, corresponding to SERCA site II. Observing no putative transport pathways dedicated to protons, we infer a direct proton counter transport through the Ca2+ exchange pathways. The LMCA1 structures provide insight into the evolutionary divergence and conserved features of this important class of ion transporters.
Original language | English |
---|---|
Article number | 167015 |
Journal | Journal of Molecular Biology |
Volume | 433 |
Issue | 16 |
ISSN | 0022-2836 |
DOIs | |
Publication status | Published - Aug 2021 |
Keywords
- Ca-ATPase LMCA1
- calcium
- Listeria
- membrane protein crystallography
- P-type ATPase