Tailored protein encapsulation into a DNA host using geometrically organized supramolecular interactions

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review


  • Andreas Sprengel, Universitat Duisburg-Essen
  • ,
  • Pascal Lill, Max-Planck-Institute of Molecular Physiology
  • ,
  • Pierre Stegemann, Universitat Duisburg-Essen
  • ,
  • Kenny Bravo-Rodriguez, Max-Planck-Institut für Kohlenforschung
  • ,
  • Elisa C. Schöneweiß, Universitat Duisburg-Essen
  • ,
  • Melisa Merdanovic, Universitat Duisburg-Essen
  • ,
  • Daniel Gudnason
  • Mikayel Aznauryan
  • ,
  • Lisa Gamrad, Universitat Duisburg-Essen
  • ,
  • Stephan Barcikowski, Universitat Duisburg-Essen
  • ,
  • Elsa Sanchez-Garcia, Max-Planck-Institut für Kohlenforschung
  • ,
  • Victoria Birkedal
  • Christos Gatsogiannis, Max-Planck-Institute of Molecular Physiology
  • ,
  • Michael Ehrmann, Universitat Duisburg-Essen, Cardiff University
  • ,
  • Barbara Saccà, Universitat Duisburg-Essen

The self-organizational properties of DNA have been used to realize synthetic hosts for protein encapsulation. However, current strategies of DNA-protein conjugation still limit true emulation of natural host-guest systems, whose formation relies on non-covalent bonds between geometrically matching interfaces. Here we report one of the largest DNA-protein complexes of semisynthetic origin held in place exclusively by spatially defined supramolecular interactions. Our approach is based on the decoration of the inner surface of a DNA origami hollow structure with multiple ligands converging to their corresponding binding sites on the protein surface with programmable symmetry and range-of-action. Our results demonstrate specific host-guest recognition in a 1:1 stoichiometry and selectivity for the guest whose size guarantees sufficient molecular diffusion preserving short intermolecular distances. DNA nanocontainers can be thus rationally designed to trap single guest molecules in their native form, mimicking natural strategies of molecular recognition and anticipating a new method of protein caging.

Original languageEnglish
Article number14472 (2017)
JournalNature Communications
Publication statusPublished - 2017

See relations at Aarhus University Citationformats

ID: 110969974