Systems Biology Approaches for Inflammatory Bowel Disease: Emphasis on Gut Microbial Metabolism

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

  • Sofia Moco, Nestle Inst Hlth Sci, Nestle SA, Unknown
  • Marco Candela, Univ Bologna, University of Bologna, Dept Pharm & Biotechnol, Unknown
  • Emil Chuang, Nestle Hlth Sci, Nestle SA, Med Affairs, Unknown
  • Colleen Draper, Nestle Inst Hlth Sci, Nestle SA, Unknown
  • Ornella Cominetti, Nestle Inst Hlth Sci, Nestle SA, Unknown
  • Ivan Montoliu, Nestle Res Ctr, Nestle SA, Unknown
  • Denis Barron, Nestle Inst Hlth Sci, Nestle SA, Unknown
  • Martin Kussmann
  • Patrizia Brigidi, Univ Bologna, University of Bologna, Dept Pharm & Biotechnol, Unknown
  • Paolo Gionchetti, Univ Bologna, University of Bologna, S Orsola Malpighi Hosp, Dept Clin Med, IBD Unit, Unknown
  • Francois-Pierre J. Martin, Nestle Inst Hlth Sci, Nestle SA, Unknown

Although the prevalence of main idiopathic forms of inflammatory bowel disease (IBD) has risen considerably over the last decades, their clinical features do not allow accurate prediction of prognosis, likelihood of disease progression, or response to specific therapy. Through a better understanding of the molecular pathways involved in IBD and the promise of more targeted therapies, the personalized approach to the management of IBD shows potential. To achieve this, there remains a significant need to better understand the disease process at cellular and molecular levels for any given individual with IBD. The complexity of biological functional networks behind the etiology of IBD highlights the need for their comprehensive analysis. In this, omics technologies can generate a systemic view of IBD pathogenesis on which to base novel, multiple pathway-integrated therapies. Omics sciences have just started to contribute here by generating gene, protein expression, metabolite data at global level and large scale, and more recently by offering new opportunities to explore gut functional ecology. In particular, there is much expectation regarding the putative role of the gut microbiome in IBD. No doubt it will provide additional insights and lead to the development of alternative, hopefully better, diagnostic, prognostic, and monitoring tools in the management of IBD. This review discusses perspectives of relevance to clinical translation with emphasis on gut microbial metabolic activities.

Original languageEnglish
JournalInflammatory Bowel Diseases
Volume20
Issue11
Pages (from-to)2104-2114
Number of pages11
ISSN1078-0998
DOIs
Publication statusPublished - Nov 2014

    Research areas

  • gut microbial metabolites, biomarkers, clinical phenotype, gut microbiota, nutrition, PROTEIN-COUPLED RECEPTORS, AMINO-ACID-METABOLISM, CROHNS-DISEASE, ULCERATIVE-COLITIS, GASTROINTESTINAL-TRACT, METABOLOMICS, BILE, IBD, BACTERIA, MARKERS

See relations at Aarhus University Citationformats

ID: 84945015