Aarhus University Seal / Aarhus Universitets segl

Switching of the electron-phonon interaction in 1T-VSe2 assisted by hot carriers

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperLetterResearchpeer-review

  • Paulina Majchrzak
  • Sahar Pakdel
  • ,
  • Deepnarayan Biswas
  • ,
  • Alfred J.H. Jones
  • Klara Volckaert
  • Igor Marković, University of St Andrews, Max Planck Institute for Chemical Physics of Solids
  • ,
  • Federico Andreatta
  • ,
  • Raman Sankar, Academia Sinica - Institute of Physics
  • ,
  • Chris Jozwiak, Advanced Light Source, Berkeley
  • ,
  • Eli Rotenberg, Advanced Light Source, Berkeley
  • ,
  • Aaron Bostwick, Advanced Light Source, Berkeley
  • ,
  • Charlotte E. Sanders, Rutherford Appleton Laboratory
  • ,
  • Yu Zhang, Rutherford Appleton Laboratory
  • ,
  • Gabriel Karras, Rutherford Appleton Laboratory
  • ,
  • Richard T. Chapman, Rutherford Appleton Laboratory
  • ,
  • Adam Wyatt, Rutherford Appleton Laboratory
  • ,
  • Emma Springate, Rutherford Appleton Laboratory
  • ,
  • Jill A. Miwa
  • Philip Hofmann
  • Phil D.C. King, University of St Andrews
  • ,
  • Nicola Lanatà
  • Young Jun Chang, University of Seoul
  • ,
  • Søren Ulstrup

We apply an intense infrared laser pulse in order to perturb the electronic and vibrational states in the three-dimensional charge density wave material 1T-VSe2. Ultrafast snapshots of the light-induced hot carrier dynamics and nonequilibrium quasiparticle spectral function are collected using time- and angle-resolved photoemission spectroscopy. The hot carrier temperature and time-dependent electronic self-energy are extracted from the time-dependent spectral function, revealing that incoherent electron-phonon interactions heat the lattice above the charge density wave critical temperature on a timescale of (200±40) fs. Density functional perturbation theory calculations establish that the presence of hot carriers alters the overall phonon dispersion and quenches efficient low-energy acoustic phonon scattering channels, which results in a new quasiequilibrium state that is experimentally observed.

Original languageEnglish
Article numberL241108
JournalPhysical Review B
Volume103
Issue24
Number of pages6
ISSN2469-9950
DOIs
Publication statusPublished - Jun 2021

    Research areas

  • CHARGE-DENSITY-WAVE, FERMI-SURFACE, TRANSITION

See relations at Aarhus University Citationformats

ID: 218726272