**You are here:**
» Super J-holomorphic Curves: Construction of the Moduli Space

## Super J-holomorphic Curves: Construction of the Moduli Space

Research output: Working paper › Research

- Enno Kessler, Harvard University, United States
- Artan Sheshmani
- Shing-Tung Yau, Harvard University, United States

Let M be a super Riemann surface with holomorphic distribution D and N a symplectic manifold with compatible almost complex structure J. We call a map Φ:M→N a super J-holomorphic curve if its differential maps the almost complex structure on D to J. Such a super J-holomorphic curve is a critical point for the superconformal action and satisfies a super differential equation of first order. Using component fields of this super differential equation and a transversality argument we construct the moduli space of super J-holomorphic curves as a smooth subsupermanifold of the space of maps M→N.

Original language | English |
---|

Publisher | ArXiv |
---|

Publication status | Published - 13 Nov 2019 |
---|

See relations at Aarhus University
Citationformats

ID: 176966490