Structural Evolution of Disordered LixV2O5 Bronzes in V2O5 Cathodes for Li-Ion Batteries

Christian K. Christensen, Daniel R. Sørensen, Jeanette Hvam, Dorthe B. Ravnsbæk*

*Corresponding author for this work

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

20 Citations (Scopus)
255 Downloads (Pure)


Vanadium pentaoxide, V2O5, is an attractive cathode material for Li-ion batteries, which can store up to three Li ion per formula unit. At deep discharge, an irreversible reconstructive phase transition occurs with formation of the disordered ω-LixV2O5 bronze, which, despite the lack of long-range order, exhibits a high reversible capacity (∼310 mAh/g) without regaining the crystallinity upon recharge. Here, we utilize operando powder X-ray diffraction and total scattering (i.e., pair distribution function analysis) to investigate the atomic-scale structures of the deep-discharge phase ω-LixV2O5 (x ∼ 3) and, for the first time, the highly disordered phase β-LixV2O5 (x ∼ 0.3) formed during subsequent Li-extraction. Our studies reveal that the deep discharge ω-Li3V2O5 phase consists of ∼60 Å domains rock salt structure with a local cation ordering on an ∼15 Å length scale. The charged β-LixV2O5 phase only exhibits very short-range ordering (∼10 Å). The phase transition between these phases is structurally reversible and appears unexpectedly to occur via a two-phase transition mechanism.

Original languageEnglish
JournalChemistry of Materials
Pages (from-to)512-520
Publication statusPublished - 2019
Externally publishedYes


Dive into the research topics of 'Structural Evolution of Disordered LixV2O5 Bronzes in V2O5 Cathodes for Li-Ion Batteries'. Together they form a unique fingerprint.

Cite this