Staphylococcus saccharolyticus Associated with Prosthetic Joint Infections: Clinical Features and Genomic Characteristics

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

The anaerobic coagulase-negative staphylococcal species Staphylococcus saccharolyticus is a member of the normal skin microbiota. However, S. saccharolyticus is rarely found in clinical specimens and its pathogenic potential is unclear. The clinical data of prosthetic hip (n = 5) and shoulder (n = 2) joint implant-associated infections where S. saccharolyticus was detected in periprosthetic tissue specimens are described. The prosthetic hip joint infection cases presented as "aseptic" loosening and may represent chronic, insidious, low-grade prosthetic joint infections (PJIs), eventually resulting in loosening of prosthetic components. All cases were subjected to one-stage revision surgery and the long-term outcome was good. The shoulder joint infections had an acute onset. Polymicrobial growth, in all cases with Cutibacterium acnes, was found in 4/7 patients. All but one case were treated with long-term administration of beta-lactam antibiotics. Whole-genome sequencing (WGS) of the isolates was performed and potential virulence traits were identified. WGS could distinguish two phylogenetic clades (clades 1 and 2), which likely represent distinct subspecies of S. saccharolyticus. Little strain individuality was observed among strains from the same clade. Strains of clade 2 were exclusively associated with hip PJIs, whereas clade 1 strains originated from shoulder PJIs. It is possible that strains of the two clades colonize different skin habitats. In conclusion, S. saccharolyticus has the potential to cause PJIs that were previously regarded as aseptic loosening of prosthetic joint devices.

Original languageEnglish
Article number397
JournalPathogens
Volume10
Issue4
Number of pages15
ISSN2076-0817
DOIs
Publication statusPublished - Apr 2021

See relations at Aarhus University Citationformats

ID: 214847092