Some Observations on the Dimension of Fano K-Moduli

Jesus Martinez-Garcia*, Cristiano Spotti

*Corresponding author for this work

Research output: Contribution to book/anthology/report/proceedingArticle in proceedingsResearchpeer-review

Abstract

In this short note we show the unboundedness of the dimension of the K-moduli space of n-dimensional Fano varieties, and that the dimension of the stack can also be unbounded while, simultaneously, the dimension of the corresponding coarse space remains bounded.

Original languageEnglish
Title of host publicationBirational Geometry, Kähler–Einstein Metrics and Degenerations : Moscow, Shanghai and Pohang, April–November 2019
EditorsIvan Cheltsov, Xiuxiong Chen, Ludmil Katzarkov, Jihun Park
Number of pages8
Place of publicationCham
PublisherSpringer
Publication dateMay 2023
Pages609-616
ISBN (Print)978-3-031-17858-0, 978-3-031-17861-0
ISBN (Electronic)978-3-031-17859-7
DOIs
Publication statusPublished - May 2023
EventInternational Conference on Birational Geometry, Kaehler-Einstein Metrics and Degenerations, BGKEMD 2019 - Moscow, Russian Federation
Duration: 8 Apr 201913 Apr 2019

Conference

ConferenceInternational Conference on Birational Geometry, Kaehler-Einstein Metrics and Degenerations, BGKEMD 2019
Country/TerritoryRussian Federation
CityMoscow
Period08/04/201913/04/2019
SeriesSpringer Proceedings in Mathematics and Statistics
Volume409
ISSN2194-1009

Keywords

  • Fano varieties
  • K-moduli
  • K-stability

Fingerprint

Dive into the research topics of 'Some Observations on the Dimension of Fano K-Moduli'. Together they form a unique fingerprint.

Cite this