TY - JOUR
T1 - Six weeks of high-load resistance and low-load blood flow restricted training increase Na/K-ATPase sub-units α2 and β1 equally, but does not alter ClC-1 abundance in untrained human skeletal muscle
AU - Wang, Jakob
AU - Rindom, Emil
AU - Groennebaek, Thomas
AU - Sieljacks, Peter
AU - Jakobsgaard, Jesper Emil
AU - Farup, Jean
AU - Vissing, Kristian
AU - Pedersen, Thomas Holm
AU - de Paoli, Frank Vincenzo
PY - 2023/4
Y1 - 2023/4
N2 - Contractile function of skeletal muscle relies on the ability of muscle fibers to trigger and propagate action potentials (APs). These electrical signals are created by transmembrane ion transport through ion channels and membrane transporter systems. In this regard, the Cl
- ion channel 1 (ClC-1) and the Na
+/K
--ATPase (NKA) are central for maintaining ion homeostasis across the sarcolemma during intense contractile activity. Therefore, this randomized controlled trial aimed to investigate the changes in ClC-1 and specific NKA subunit isoform expression in response to six weeks (18 training sessions) of high-load resistance exercise (HLRE) and low-load blood flow restricted resistance exercise (BFRRE), respectively. HLRE was conducted as 4 sets of 12 repetitions of knee extensions performed at 70% of 1 repetition maximum (RM), while BFRRE was conducted as 4 sets of knee extensions at 30% of 1RM performed to volitional fatigue. Furthermore, the potential associations between protein expression and contractile performance were investigated. We show that muscle ClC-1 abundance was not affected by either exercise modality, whereas NKA subunit isoforms [Formula: see text]
2 and [Formula: see text]
1 increased equally by appx. 80-90% with BFRRE (p < 0.05) and 70-80% with HLRE (p < 0.05). No differential impact between exercise modalities was observed. At baseline, ClC-1 protein expression correlated inversely with dynamic knee extensor strength (r=-0.365, p = 0.04), whereas no correlation was observed between NKA subunit content and contractile performance at baseline. However, training-induced changes in NKA [Formula: see text]
2 subunit (r = 0.603, p < 0.01) and [Formula: see text]
1 subunit (r = 0.453, p < 0.05) correlated with exercise-induced changes in maximal voluntary contraction. These results suggest that the initial adaptation to resistance-based exercise does not involve changes in ClC-1 abundance in untrained skeletal muscle, and that increased content of NKA subunits may facilitate increases in maximal force production.
AB - Contractile function of skeletal muscle relies on the ability of muscle fibers to trigger and propagate action potentials (APs). These electrical signals are created by transmembrane ion transport through ion channels and membrane transporter systems. In this regard, the Cl
- ion channel 1 (ClC-1) and the Na
+/K
--ATPase (NKA) are central for maintaining ion homeostasis across the sarcolemma during intense contractile activity. Therefore, this randomized controlled trial aimed to investigate the changes in ClC-1 and specific NKA subunit isoform expression in response to six weeks (18 training sessions) of high-load resistance exercise (HLRE) and low-load blood flow restricted resistance exercise (BFRRE), respectively. HLRE was conducted as 4 sets of 12 repetitions of knee extensions performed at 70% of 1 repetition maximum (RM), while BFRRE was conducted as 4 sets of knee extensions at 30% of 1RM performed to volitional fatigue. Furthermore, the potential associations between protein expression and contractile performance were investigated. We show that muscle ClC-1 abundance was not affected by either exercise modality, whereas NKA subunit isoforms [Formula: see text]
2 and [Formula: see text]
1 increased equally by appx. 80-90% with BFRRE (p < 0.05) and 70-80% with HLRE (p < 0.05). No differential impact between exercise modalities was observed. At baseline, ClC-1 protein expression correlated inversely with dynamic knee extensor strength (r=-0.365, p = 0.04), whereas no correlation was observed between NKA subunit content and contractile performance at baseline. However, training-induced changes in NKA [Formula: see text]
2 subunit (r = 0.603, p < 0.01) and [Formula: see text]
1 subunit (r = 0.453, p < 0.05) correlated with exercise-induced changes in maximal voluntary contraction. These results suggest that the initial adaptation to resistance-based exercise does not involve changes in ClC-1 abundance in untrained skeletal muscle, and that increased content of NKA subunits may facilitate increases in maximal force production.
KW - Cl conductance
KW - Exercise
KW - Function
KW - Muscle excitability
UR - http://www.scopus.com/inward/record.url?scp=85151512472&partnerID=8YFLogxK
U2 - 10.1007/s10974-023-09644-6
DO - 10.1007/s10974-023-09644-6
M3 - Journal article
C2 - 37014477
SN - 0142-4319
VL - 44
SP - 25
EP - 36
JO - Journal of Muscle Research and Cell Motility
JF - Journal of Muscle Research and Cell Motility
IS - 1
ER -