Signal Processing Steady-State Surface NMR Data

Lichao Liu*, Denys Grombacher, Matthew Griffiths, Mathias Vang, Jakob Juul Larsen

*Corresponding author for this work

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

3 Citations (Scopus)

Abstract

Surface nuclear magnetic resonance (NMR) is a unique technique to study groundwater, as it provides direct insights into water content and pore-scale properties. However, surface NMR suffers from an extremely weak signal that limits mapping speeds and can prohibit measurements in high ambient noise environments. It has recently been demonstrated that steady-state sequences can deliver orders of magnitude signal-to-noise ratio (S/N) enhancement in comparison with standard methods. Most notably, the steady-state approach collapses the surface NMR signal into an extremely narrow frequency band, which leads to vastly improved noise rejection. In this article, we develop the signal processing chain for steady-state surface NMR data. Each step in the signal processing chain, transient culling, pulse windowing, de-spiking, powerline harmonics subtraction, and spectral analysis are explained in detail. We demonstrate how error estimation can be efficiently performed using the power spectral density in the vicinity of the transmitting frequency. We also demonstrate how off-resonance excitation can be determined by locating the peak spectrum of surface NMR signal with an array of phase-corrected discrete Fourier transforms (DFTs). The presented signal processing methods can be easily implemented and applied to extract signal features for quality control and inversion procedures. We give a field example where data collected with steady-state pulse sequences are processed and inverted.

Original languageEnglish
Article number6502313
JournalIEEE Transactions on Instrumentation and Measurement
Volume72
ISSN0018-9456
DOIs
Publication statusPublished - Apr 2023

Keywords

  • Digital signal processing
  • hydrogeophysics
  • measurement
  • steady state
  • surface nuclear magnetic resonance (NMR)

Fingerprint

Dive into the research topics of 'Signal Processing Steady-State Surface NMR Data'. Together they form a unique fingerprint.

Cite this