TY - JOUR
T1 - Scenario analysis using the Daisy model to assess and mitigate nitrate leaching from complex agro-environmental settings in Denmark
AU - Rashid, Muhammad Adil
AU - Bruun, Sander
AU - Styczen, Merete Elisabeth
AU - Ørum, Jens Erik
AU - Borgen, Signe Kynding
AU - Thomsen, Ingrid Kaag
AU - Jensen, Lars Stoumann
PY - 2022/4/10
Y1 - 2022/4/10
N2 - Nitrate (N) leaching from intensively managed cropping systems is of environmental concern and it varies at local scale. To evaluate the performance of agricultural practices at this scale, there is a need to develop comprehensive assessments of N leaching and the N leaching reduction potential of mitigation measures. A model-based analysis was performed to (i) estimate N leaching from Danish cropping systems, representing 20 crop rotations, 3 soil types, 2 climates and 3–4 levels of manure (slurry)-to-fertilizer ratios, but with same available N (according to regulatory N fertilization norms), and (ii) appraise mitigation potential of on-farm measures (i.e. catch crops, early sowing of winter cereals) to reduce N leaching. The analysis was performed using a process-based agro-environmental model (Daisy). Simulated average N leaching over 24 years ranged from 16 to 85 kg N/ha/y for different crop rotations. Rotations with a higher proportion of spring crops were more prone to leaching than rotations having a higher proportion of winter cereals and semi-perennial grass-clover leys. N leaching decreased with increasing soil clay content under all conditions. The effect of two climates (different regions, mainly differing in precipitation) on N leaching was generally similar, with slight variation across rotations. Supplying a part of the available N as manure-N resulted in similar N leaching as mineral fertilizer N alone during the simulation period. Among the mitigation measures, both undersown and autumn sown catch crops were effective. Effectiveness of measures also depended on their place and frequency of occurrence in a rotation. Adopting catch crops during the most leaching-prone years and with higher frequency were effective choices. This analysis provided essential data-driven knowledge on N leaching risk, and potential of leaching reduction options. These results can serve as a supplementary guiding-tool for farmers to plan management practices, and for legislators to design farm-specific regulatory measures.
AB - Nitrate (N) leaching from intensively managed cropping systems is of environmental concern and it varies at local scale. To evaluate the performance of agricultural practices at this scale, there is a need to develop comprehensive assessments of N leaching and the N leaching reduction potential of mitigation measures. A model-based analysis was performed to (i) estimate N leaching from Danish cropping systems, representing 20 crop rotations, 3 soil types, 2 climates and 3–4 levels of manure (slurry)-to-fertilizer ratios, but with same available N (according to regulatory N fertilization norms), and (ii) appraise mitigation potential of on-farm measures (i.e. catch crops, early sowing of winter cereals) to reduce N leaching. The analysis was performed using a process-based agro-environmental model (Daisy). Simulated average N leaching over 24 years ranged from 16 to 85 kg N/ha/y for different crop rotations. Rotations with a higher proportion of spring crops were more prone to leaching than rotations having a higher proportion of winter cereals and semi-perennial grass-clover leys. N leaching decreased with increasing soil clay content under all conditions. The effect of two climates (different regions, mainly differing in precipitation) on N leaching was generally similar, with slight variation across rotations. Supplying a part of the available N as manure-N resulted in similar N leaching as mineral fertilizer N alone during the simulation period. Among the mitigation measures, both undersown and autumn sown catch crops were effective. Effectiveness of measures also depended on their place and frequency of occurrence in a rotation. Adopting catch crops during the most leaching-prone years and with higher frequency were effective choices. This analysis provided essential data-driven knowledge on N leaching risk, and potential of leaching reduction options. These results can serve as a supplementary guiding-tool for farmers to plan management practices, and for legislators to design farm-specific regulatory measures.
KW - Catch crops
KW - Crop modelling
KW - Crop rotation
KW - Environmental impact
KW - Environmental modelling
KW - Mitigation measures
U2 - 10.1016/j.scitotenv.2021.151518
DO - 10.1016/j.scitotenv.2021.151518
M3 - Journal article
C2 - 34762963
SN - 0048-9697
VL - 816
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 151518
ER -