Aarhus University Seal

RF coil design for accurate parallel imaging on 13C MRSI using 23Na sensitivity profiles

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review


  • Juan D Sanchez-Heredia, Technical University of Denmark
  • ,
  • Rie B Olin, Technical University of Denmark
  • ,
  • James T Grist, University of Oxford, University of Birmingham
  • ,
  • Wenjun Wang, Technical University of Denmark
  • ,
  • Nikolaj Bøgh
  • Vitaliy Zhurbenko, Technical University of Denmark
  • ,
  • Esben S Hansen
  • Rolf F Schulte, GE Healthcare
  • ,
  • Damian Tyler, University of Oxford
  • ,
  • Christoffer Laustsen
  • Jan H Ardenkjaer-Larsen, Technical University of Denmark

PURPOSE: To develop a coil-based method to obtain accurate sensitivity profiles in 13 C MRI at 3T from the endogenous 23 Na. An eight-channel array is designed for 13 C MR acquisitions. As application examples, the array is used for two-fold accelerated acquisitions of both hyperpolarized 13 C metabolic imaging of pig kidneys and the human brain.

METHODS: A flexible coil array was tuned optimally for 13 C at 3T (32.1 MHz), with the coil coupling coefficients matched to be nearly identical at the resonance frequency of 23 Na (33.8 MHz). This is done by enforcing a high decoupling (obtained through highly mismatched preamplifiers) and adjusting the coupling frequency response. The SNR performance is compared to reference coils.

RESULTS: The measured sensitivity profiles on a phantom showed high spatial similarity for 13 C and 23 Na resonances, with average noise correlation of 9 and 11%, respectively. For acceleration factors 2, 3, and 4, the obtained maximum g-factors were 1.0, 1.1, and 2.6, respectively. The 23 Na profiles obtained in vivo could be used successfully to perform two-fold acceleration of hyperpolarized 13 C 3D acquisitions of both pig kidneys and a healthy human brain.

CONCLUSION: A receive array has been developed in such a way that the 13 C sensitivity profiles could be accurately obtained from measurements at the 23 Na frequency. This technique facilitates accelerated acquisitions for hyperpolarized 13 C imaging. The SNR performance obtained at the 13 C frequency, compares well to other state-of-the-art coils for the same purpose, showing slightly better superficial and central SNR.

Original languageEnglish
JournalMagnetic Resonance in Medicine
Pages (from-to)1391-1405
Number of pages15
Publication statusPublished - Sep 2022

See relations at Aarhus University Citationformats

ID: 271633913