Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaper › Journal article › Research › peer-review
r-cubed : Guiding the overwhelmed scientist from random wrangling to Reproducible Research in R. / Johnston, Luke; Juel, Helene Bæk; Lengger, Betinna; Witte, Daniel Rinse; Chatwin, Hannah; Christiansen, Malene Revsbech; Isaksen, Anders Aasted.
In: The Journal of Open Source Education, Vol. 4, No. 44, 122, 10.2021.Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaper › Journal article › Research › peer-review
}
TY - JOUR
T1 - r-cubed
T2 - Guiding the overwhelmed scientist from random wrangling to Reproducible Research in R
AU - Johnston, Luke
AU - Juel, Helene Bæk
AU - Lengger, Betinna
AU - Witte, Daniel Rinse
AU - Chatwin, Hannah
AU - Christiansen, Malene Revsbech
AU - Isaksen, Anders Aasted
PY - 2021/10
Y1 - 2021/10
N2 - The amount of biological data created increases every year, driven largely by technologies such as high-throughput -omics, real-time monitoring, or high resolution imaging in addition to greater access to routine administrative data and larger study populations. This not only presents operational challenges, but also highlights considerable needs for the skills and knowledge to manage, process, and analyze this data.Along with the open science movement on the rise, methods and analytic processes are also increasingly expected to be open and transparent and for scientific studies to be reproducible.Unfortunately, training in modern computational skills has not kept pace, which is particularly evident in biomedical research, where training tends to focus on clinical, experimental, or wet-lab skills. The computational learning module we have developed and described below aims to introduce and improve skills in R, reproducibility, and open science for researchers in the biomedical field, with a focus on diabetes research.The r-cubed (Reproducible Research in R or R3) learning module is structured as a three-day workshop, with five sub-modules. We have specifically designed the module as an open educational resource that: 1) instructors can make use of directly or modify for their own lessons; and, 2) learners can use independently or as a reference after participating in the workshop. All content is available for re-use under CC-BY License.
AB - The amount of biological data created increases every year, driven largely by technologies such as high-throughput -omics, real-time monitoring, or high resolution imaging in addition to greater access to routine administrative data and larger study populations. This not only presents operational challenges, but also highlights considerable needs for the skills and knowledge to manage, process, and analyze this data.Along with the open science movement on the rise, methods and analytic processes are also increasingly expected to be open and transparent and for scientific studies to be reproducible.Unfortunately, training in modern computational skills has not kept pace, which is particularly evident in biomedical research, where training tends to focus on clinical, experimental, or wet-lab skills. The computational learning module we have developed and described below aims to introduce and improve skills in R, reproducibility, and open science for researchers in the biomedical field, with a focus on diabetes research.The r-cubed (Reproducible Research in R or R3) learning module is structured as a three-day workshop, with five sub-modules. We have specifically designed the module as an open educational resource that: 1) instructors can make use of directly or modify for their own lessons; and, 2) learners can use independently or as a reference after participating in the workshop. All content is available for re-use under CC-BY License.
KW - Reproducible research
KW - data management and documentation
KW - data management infrastructure
KW - Programming Education
U2 - 10.21105/jose.00122
DO - 10.21105/jose.00122
M3 - Journal article
VL - 4
JO - The Journal of Open Source Education
JF - The Journal of Open Source Education
SN - 2577-3569
IS - 44
M1 - 122
ER -