Quantum duets working as autonomous thermal motors

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review



We study the dynamic properties of a thermal autonomous machine made up of two quantum Brownian particles, each of which is in contact with an environment at different temperature and moves on a periodic sinusoidal track. When such tracks are shifted, the center of mass of the system exhibits a nonvanishing velocity, for which we provide an exact expression in the limit of small track undulations. We discuss the role of the broken spatial symmetry in the emergence of directed motion in thermal machines. We then consider the case in which external deterministic forces are applied to the system, and we characterize its steady-state velocity. If the applied external force opposes the system motion, work can be extracted from such a steady-state thermal machine, without any external cyclic protocol. When the two particles are not interacting, our results reduce to those of Fisher and Zwerger [Phys. Rev. B 32, 6190 (1985)PRBMDO0163-182910.1103/PhysRevB.32.6190] and Aslangul, Pottier, and Saint-James [J. Phys. France 48, 1093 (1987)JOPQAG0302-073810.1051/jphys:019870048070109300] for a single particle moving in a periodic tilted potential. We finally use our results for the motor velocity to check the validity of the quantum molecular dynamics algorithm in the nonlinear, nonequilibrium regime.

Original languageEnglish
Article number042138
JournalPhysical Review E
Number of pages13
Publication statusPublished - 2019

See relations at Aarhus University Citationformats

ID: 172709375