Quantitative Proteome Analysis Reveals Increased Content of Basement Membrane Proteins in Arteries From Patients With Type 2 Diabetes Mellitus and Lower Levels Among Metformin Users

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

  • Simone A R Preil, From the Department of Biochemistry and Pharmacology, Odense University Hospital (S.A.R.P., L.P.K., H.C.B., P.S.J., M.B.-P., M.L.H., L.M.R.) and Protein Research Group, Department of Biochemistry and Molecular Biology (M.R.L.), University of Southern Denmark, Odense, Denmark; Center for Individualized Medicine in Arterial Diseases (CIMA), Center for Clinical Proteomics (CCP), Odense Patient Explorative Network (OPEN) (S.A.R.P., L.P.K., H.C.B., P.S.J., M.B.-P., M.L.H., L.M.R.) and Department of Cardiothoracic and Vascular Surgery (M.L.H.), Odense University Hospital, Odense, Denmark; and Institute of Pathology, Aarhus University Hospital, Aarhus, Denmark (P.S.N., T.S.).
  • ,
  • Lars P Kristensen
  • Hans C Beck, From the Department of Biochemistry and Pharmacology, Odense University Hospital (S.A.R.P., L.P.K., H.C.B., P.S.J., M.B.-P., M.L.H., L.M.R.) and Protein Research Group, Department of Biochemistry and Molecular Biology (M.R.L.), University of Southern Denmark, Odense, Denmark; Center for Individualized Medicine in Arterial Diseases (CIMA), Center for Clinical Proteomics (CCP), Odense Patient Explorative Network (OPEN) (S.A.R.P., L.P.K., H.C.B., P.S.J., M.B.-P., M.L.H., L.M.R.) and Department of Cardiothoracic and Vascular Surgery (M.L.H.), Odense University Hospital, Odense, Denmark; and Institute of Pathology, Aarhus University Hospital, Aarhus, Denmark (P.S.N., T.S.).
  • ,
  • Pia S Jensen, From the Department of Biochemistry and Pharmacology, Odense University Hospital (S.A.R.P., L.P.K., H.C.B., P.S.J., M.B.-P., M.L.H., L.M.R.) and Protein Research Group, Department of Biochemistry and Molecular Biology (M.R.L.), University of Southern Denmark, Odense, Denmark; Center for Individualized Medicine in Arterial Diseases (CIMA), Center for Clinical Proteomics (CCP), Odense Patient Explorative Network (OPEN) (S.A.R.P., L.P.K., H.C.B., P.S.J., M.B.-P., M.L.H., L.M.R.) and Department of Cardiothoracic and Vascular Surgery (M.L.H.), Odense University Hospital, Odense, Denmark; and Institute of Pathology, Aarhus University Hospital, Aarhus, Denmark (P.S.N., T.S.).
  • ,
  • Patricia S Nielsen
  • Torben Steiniche
  • Marina Bjørling-Poulsen, From the Department of Biochemistry and Pharmacology, Odense University Hospital (S.A.R.P., L.P.K., H.C.B., P.S.J., M.B.-P., M.L.H., L.M.R.) and Protein Research Group, Department of Biochemistry and Molecular Biology (M.R.L.), University of Southern Denmark, Odense, Denmark; Center for Individualized Medicine in Arterial Diseases (CIMA), Center for Clinical Proteomics (CCP), Odense Patient Explorative Network (OPEN) (S.A.R.P., L.P.K., H.C.B., P.S.J., M.B.-P., M.L.H., L.M.R.) and Department of Cardiothoracic and Vascular Surgery (M.L.H.), Odense University Hospital, Odense, Denmark; and Institute of Pathology, Aarhus University Hospital, Aarhus, Denmark (P.S.N., T.S.).
  • ,
  • Martin R Larsen, From the Department of Biochemistry and Pharmacology, Odense University Hospital (S.A.R.P., L.P.K., H.C.B., P.S.J., M.B.-P., M.L.H., L.M.R.) and Protein Research Group, Department of Biochemistry and Molecular Biology (M.R.L.), University of Southern Denmark, Odense, Denmark; Center for Individualized Medicine in Arterial Diseases (CIMA), Center for Clinical Proteomics (CCP), Odense Patient Explorative Network (OPEN) (S.A.R.P., L.P.K., H.C.B., P.S.J., M.B.-P., M.L.H., L.M.R.) and Department of Cardiothoracic and Vascular Surgery (M.L.H.), Odense University Hospital, Odense, Denmark; and Institute of Pathology, Aarhus University Hospital, Aarhus, Denmark (P.S.N., T.S.).
  • ,
  • Maria L Hansen
  • Lars M Rasmussen, From the Department of Biochemistry and Pharmacology, Odense University Hospital (S.A.R.P., L.P.K., H.C.B., P.S.J., M.B.-P., M.L.H., L.M.R.) and Protein Research Group, Department of Biochemistry and Molecular Biology (M.R.L.), University of Southern Denmark, Odense, Denmark; Center for Individualized Medicine in Arterial Diseases (CIMA), Center for Clinical Proteomics (CCP), Odense Patient Explorative Network (OPEN) (S.A.R.P., L.P.K., H.C.B., P.S.J., M.B.-P., M.L.H., L.M.R.) and Department of Cardiothoracic and Vascular Surgery (M.L.H.), Odense University Hospital, Odense, Denmark; and Institute of Pathology, Aarhus University Hospital, Aarhus, Denmark (P.S.N., T.S.). lars.melholt.rasmussen@rsyd.dk.

BACKGROUND: The increased risk of cardiovascular diseases in type 2 diabetes mellitus has been extensively documented, but the origins of the association remain largely unknown. We sought to determine changes in protein expressions in arterial tissue from patients with type 2 diabetes mellitus and moreover hypothesized that metformin intake influences the protein composition.

METHODS AND RESULTS: We analyzed nonatherosclerotic repair arteries gathered at coronary bypass operations from 30 patients with type 2 diabetes mellitus and from 30 age- and sex-matched nondiabetic individuals. Quantitative proteome analysis was performed by isobaric tag for relative and absolute quantitation-labeling and liquid chromatography-mass spectrometry, tandem mass spectrometry analysis on individual arterial samples. The amounts of the basement membrane components, α1-type IV collagen and α2-type IV collagen, γ1-laminin and β2-laminin, were significantly increased in patients with diabetes mellitus. Moreover, the expressions of basement membrane components and other vascular proteins were significantly lower among metformin users when compared with nonusers. Patients treated with or without metformin had similar levels of hemoglobin A1c, cholesterol, and blood pressure. In addition, quantitative histomorphometry showed increased area fractions of collagen-stainable material in tunica intima and media among patients with diabetes mellitus.

CONCLUSIONS: The distinct accumulation of arterial basement membrane proteins in type 2 diabetes mellitus discloses a similarity between the diabetic macroangiopathy and microangiopathy and suggests a molecular explanation behind the alterations in vascular remodeling, biomechanical properties, and aneurysm formation described in diabetes mellitus. The lower amounts of basement membrane components in metformin-treated individuals are compatible with the hypothesis of direct beneficial drug effects on the matrix composition in the vasculature.

Original languageEnglish
JournalCirculation: Cardiovascular Genetics
Volume8
Issue5
Pages (from-to)727-35
Number of pages9
ISSN1942-325X
DOIs
Publication statusPublished - Oct 2015
Externally publishedYes

    Research areas

  • Aged, Basement Membrane, Diabetes Mellitus, Type 2, Female, Humans, Hypoglycemic Agents, Male, Mammary Arteries, Membrane Proteins, Metformin, Proteome, Journal Article, Research Support, Non-U.S. Gov't

See relations at Aarhus University Citationformats

ID: 117467089