Predicting provenance of forensic soil samples: Linking soil to ecological habitats by metabarcoding and supervised classification

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Environmental DNA (eDNA) is increasingly applied in ecological studies, including studies with the primary purpose of criminal investigation, in which eDNA from soil can be used to pair samples or reveal sample provenance. We collected soil eDNA samples as part of a large national biodiversity research project across 130 sites in Denmark. We investigated the potential for soil eDNA metabarcoding in predicting provenance in terms of environmental conditions, habitat type and geographic regions. We used linear regression for predicting environmental gradients of light, soil moisture, pH and nutrient status (represented by Ellenberg Indicator Values, EIVs) and Quadratic Discriminant Analysis (QDA) to predict habitat type and geographic region. eDNA data performed relatively well as a predictor of environmental gradients (R2 > 0.81). Its ability to discriminate between habitat types was variable, with high accuracy for certain forest types and low accuracy for heathland, which was poorly predicted. Geographic region was also less accurately predicted by eDNA. We demonstrated the application of provenance prediction in forensic science by evaluating and discussing two mock crime scenes. Here, we listed the plant species from annotated sequences, which can further aid in identifying the likely habitat or, in case of rare species, a geographic region. Predictions of environmental gradients and habitat types together give an overall accurate description of a crime scene, but care should be taken when interpreting annotated sequences, e.g. due to erroneous assignments in GenBank. Our approach demonstrates that important habitat properties can be derived from soil eDNA, and exemplifies a range of potential applications of eDNA in forensic ecology.

Original languageEnglish
Article numbere0202844
JournalPLOS ONE
Volume14
Issue7
Number of pages16
ISSN1932-6203
DOIs
Publication statusPublished - 2019

See relations at Aarhus University Citationformats

ID: 161334747